若函數(shù)f(x)=x3-3x+a有三個不同的零點,求實數(shù)a的取值范圍.

(本小題滿分12分)
解:由函數(shù)f(x)=x3-3x+a有三個不同的零點,
則函數(shù)f(x)有兩個極值點,極小值小于0,極大值大于0;
由f′(x)=3x2-3=3(x+1)(x-1)=0,解得x1=1,x2=-1,
所以函數(shù)f(x)的兩個極,x∈(-∞,-1),f′(x)>0,x∈(-1,1),f′(x)<0,x∈(1,+∞),f′(x)>0,
∴函數(shù)的極小值f(1)=a-2和極大值f(-1)=a+2.
因為函數(shù)f(x)=x3-3x+a有三個不同的零點,
所以,解之,得-2<a<2.
故實數(shù)a的取值范圍是(-2,2).
分析:已知條件轉(zhuǎn)化為函數(shù)有兩個極值點,并且極小值小于0,極大值大于0,求解即可.
點評:本題是中檔題,考查函數(shù)的導數(shù)與函數(shù)的極值的關系,考查轉(zhuǎn)化思想,計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x3+
1
x
,則
 
lim
△x→0
f(△x-1)+f(1)
2△x
等于( �。�

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x3+3x-1,x∈[-1,l],則下列判斷正確的是( �。�

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x3+3mx2+nx+m2為奇函數(shù),則實數(shù)m的值為
0
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x3-3bx+b在區(qū)間(0,1)內(nèi)有極小值,則b的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x3-3x+1在閉區(qū)間[-3,0]上的最大值,最小值分別為M,m,則M+m=
-14
-14

查看答案和解析>>

同步練習冊答案