【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為萬(wàn)元,每生產(chǎn)千件需另投入萬(wàn)元.設(shè)該公司一年內(nèi)共生產(chǎn)該品牌服裝千件并全部銷(xiāo)售完,每千件的銷(xiāo)售收入為萬(wàn)元,且.
(1)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲得利潤(rùn)最大?(注:年利潤(rùn)=年銷(xiāo)售收入-年總成本)
【答案】(1)
(2)當(dāng)年產(chǎn)量為9千件時(shí),該公司在這一品牌服裝生產(chǎn)中獲利最大
【解析】
試題解:(I)當(dāng)時(shí),;
當(dāng)時(shí),.
∴ 年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)關(guān)系式為
(Ⅱ)當(dāng)時(shí),由,
即年利潤(rùn)在上單增,在上單減
∴ 當(dāng)時(shí),取得最大值,且(萬(wàn)元).
當(dāng)時(shí),,僅當(dāng)時(shí)取“=”
綜上可知,當(dāng)年產(chǎn)量為千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲年利潤(rùn)最大,最大值為萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)設(shè)函數(shù),若在上存在極值,求的取值范圍,并判斷極值的正負(fù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
①函數(shù)是奇函數(shù);
②將函數(shù)的圖像向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖像;
③若是第一象限角且,則;
④是函數(shù)的圖像的一條對(duì)稱軸;
⑤函數(shù)的圖像關(guān)于點(diǎn)中心對(duì)稱。
其中,正確的命題序號(hào)是______________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地?cái)M規(guī)劃種植一批芍藥,為了美觀,將種植區(qū)域(區(qū)域I)設(shè)計(jì)成半徑為1km的扇形,中心角().為方便觀賞,增加收入,在種植區(qū)域外圍規(guī)劃觀賞區(qū)(區(qū)域II)和休閑區(qū)(區(qū)域III),并將外圍區(qū)域按如圖所示的方案擴(kuò)建成正方形,其中點(diǎn),分別在邊和上.已知種植區(qū)、觀賞區(qū)和休閑區(qū)每平方千米的年收入分別是10萬(wàn)元、20萬(wàn)元、20萬(wàn)元.
(1)要使觀賞區(qū)的年收入不低于5萬(wàn)元,求的最大值;
(2)試問(wèn):當(dāng)為多少時(shí),年總收入最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的焦距為,斜率為的直線與橢圓交于兩點(diǎn),若線段的中點(diǎn)為,且直線的斜率為.
(1)求橢圓的方程;
(2)若過(guò)左焦點(diǎn)斜率為的直線與橢圓交于點(diǎn) 為橢圓上一點(diǎn),且滿足,問(wèn):是否為定值?若是,求出此定值,若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且.
(1)若函數(shù)在上恒有意義,求的取值范圍;
(2)是否存在實(shí)數(shù),使函數(shù)在區(qū)間上為增函數(shù),且最大值為?若存在求出的值,若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù),有下列結(jié)論:
①的定義域?yàn)?/span>(-1, 1); ②的值域?yàn)?/span>(, );
③的圖象關(guān)于原點(diǎn)成中心對(duì)稱; ④在其定義域上是減函數(shù);
⑤對(duì)的定義城中任意都有.
其中正確的結(jié)論序號(hào)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐中,面,底面是菱形,且,,過(guò)點(diǎn)作直線,為直線上一動(dòng)點(diǎn).
(1)求證:;
(2)當(dāng)面面時(shí),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為(為參數(shù), ),以為極點(diǎn), 軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)求已知曲線和曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com