【題目】某校團(tuán)委對(duì)“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計(jì)算得,參照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

得到正確結(jié)論是( )

A. 有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星無(wú)關(guān)”

B. 有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”

C. 在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星無(wú)關(guān)”

D. 在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”

【答案】B

【解析】

通過(guò)與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項(xiàng).

解:,可得有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”,故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了政府對(duì)過(guò)熱的房地產(chǎn)市場(chǎng)進(jìn)行調(diào)控決策,統(tǒng)計(jì)部門(mén)對(duì)城市人和農(nóng)村人進(jìn)行了買(mǎi)房的心理預(yù)期調(diào)研,用簡(jiǎn)單隨機(jī)抽樣的方法抽取110人進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:

買(mǎi)房

不買(mǎi)房

糾結(jié)

城市人

5

15

農(nóng)村人

20

10

已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是3:8.

分別求樣本中城市人中的不買(mǎi)房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù);

用獨(dú)立性檢驗(yàn)的思想方法說(shuō)明在這三種買(mǎi)房的心理預(yù)期中哪一種與城鄉(xiāng)有關(guān)?

參考公式:

k

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩同學(xué)在復(fù)習(xí)數(shù)列時(shí)發(fā)現(xiàn)原來(lái)曾經(jīng)做過(guò)的一道數(shù)列問(wèn)題因紙張被破壞,導(dǎo)致一個(gè)條件看不清,具體如下:等比數(shù)列的前n項(xiàng)和為,已知_____,

1)判斷,,的關(guān)系;

2)若,設(shè),記的前n項(xiàng)和為,證明:.

甲同學(xué)記得缺少的條件是首項(xiàng)a1的值,乙同學(xué)記得缺少的條件是公比q的值,并且他倆都記得第(1)問(wèn)的答案是,,成等差數(shù)列.如果甲、乙兩同學(xué)記得的答案是正確的,請(qǐng)你通過(guò)推理把條件補(bǔ)充完整并解答此題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)討論函數(shù)的零點(diǎn)個(gè)數(shù);

2)設(shè),證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求直線的普通方程與圓的直角坐標(biāo)方程;

(2)設(shè)動(dòng)點(diǎn)在圓上,動(dòng)線段的中點(diǎn)的軌跡為,與直線交點(diǎn)為,且直角坐標(biāo)系中,點(diǎn)的橫坐標(biāo)大于點(diǎn)的橫坐標(biāo),求點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求證:當(dāng)x(0,π]時(shí),f(x)<1;

2)求證:當(dāng)m2時(shí),對(duì)任意x0(0,π] ,存在x1(0,π]x2(0,π](x1x2)使g(x1)=g(x2)=f(x0)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,平面平面均是等腰直角三角形,,、分別為、的中點(diǎn).

)求證:平面;

)求證:

)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C1ab0)的左、右焦點(diǎn)分別為F1,F2,點(diǎn)P為橢圓C上不與左右頂點(diǎn)重合的動(dòng)點(diǎn),設(shè)IG分別為△PF1F2的內(nèi)心和重心.當(dāng)直線IG的傾斜角不隨著點(diǎn)P的運(yùn)動(dòng)而變化時(shí),橢圓C的離心率為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求的單調(diào)區(qū)間;

2)過(guò)點(diǎn)存在幾條直線與曲線相切,并說(shuō)明理由;

3)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案