【題目】已知數(shù)列的首項(xiàng)為1,各項(xiàng)均為正數(shù),其前項(xiàng)和為,.

1)求,的值;

2)求證:數(shù)列為等差數(shù)列;

3)設(shè)數(shù)列滿足,求證:.

【答案】(1),;(2)證明見解析;(3)證明見解析.

【解析】

(1) 即可求出,的值;

(2)兩式相減進(jìn)行整理可得,即可證明為等差數(shù)列.

(3)由(2)可知,兩式相減整理得,則當(dāng)時(shí),,通過放縮即可證明; 當(dāng)時(shí),.從而可證.

解:(1)令得,,又,解得;

得,,即,從而.

(2)因?yàn)?/span> ①;所以

-②得,.因?yàn)閿?shù)列的各項(xiàng)均為正數(shù),所以.

從而.

去分母得,

化簡(jiǎn)并整理得,,即,

所以.所以數(shù)列為等差數(shù)列.

(3)由(2)知, ③.當(dāng)時(shí),,又,所以.

由③知, ④.③-④得,

,依題意,,所以.

當(dāng)時(shí),

,當(dāng)時(shí),,原不等式也成立.

綜上得,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng) 時(shí),求曲線yfx)在點(diǎn)(1,f1))處的切線方程;(2)求函數(shù) 的單調(diào)區(qū)間和極值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,圓.以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系,直線經(jīng)過點(diǎn)且傾斜角為.

求圓的直角坐標(biāo)方程和直線的參數(shù)方程;

已知直線與圓交與,,滿足的中點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等腰梯形中,,的中點(diǎn).將沿折起后如圖2,使二面角成直二面角,設(shè)的中點(diǎn),是棱的中

點(diǎn).

1)求證:;

2)求證:平面平面

3)判斷能否垂直于平面,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知兩點(diǎn)分別為橢圓的右頂點(diǎn)和上頂點(diǎn),且,右準(zhǔn)線的方程為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過點(diǎn)的直線交橢圓于另一點(diǎn),交于點(diǎn).若以為直徑的圓經(jīng)過原點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段上,且滿足,求點(diǎn)的軌跡的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)在曲線上,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐D-ABC中,E,F分別為DBAB的中點(diǎn),且.

1)求證:平面平面ABC;

2)求二面角D-CE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,BC的對(duì)邊分別為a,b,c,且sin2A+sin2B+sin2CsinAsinB+sinBsinC+sinCsin A

1)證明:△ABC是正三角形;

2)如圖,點(diǎn)D在邊BC的延長線上,且BC2CD,AD,求sinBAD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)任意實(shí)數(shù),,給出下列命題,其中真命題是(

A.”是“”的充要條件B.”是“”的充分條件

C.”是“”的必要條件D.是無理數(shù)”是“是無理數(shù)”的充要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案