下列四個判斷,正確的是(  )
①某校高二某兩個班的人數(shù)分別是m,n(m≠n),某次測試數(shù)學(xué)平均分分別是a,b(a≠b),則這兩個班的數(shù)學(xué)平均分為
a+b
2
;
②10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是15,17,14,10,15,17,17,16,14,12,設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有a<b<c;
③從總體中抽取的樣本(x1,y2),(x2,y2),…(xn,yn),若記
.
x
=
1
n
n
i=1
xi
,
.
y
=
1
n
n
i=1
yi
,則回歸直線y=bx+a必過點(diǎn)(
.
x
,
.
y
);
④已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.1.
A、①②③B、①③④
C、②③④D、①②③④
考點(diǎn):命題的真假判斷與應(yīng)用,線性回歸方程,正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義
專題:簡易邏輯
分析:利用計算平均數(shù)的結(jié)果判斷①的正誤;
通過就是平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,判斷②的正誤;
利用回歸直線方程經(jīng)過(
.
x
,
.
y
),判斷③的正誤;
通過正態(tài)分布的對稱性判斷④的正誤.
解答: 解:對于①,某校高二某兩個班的人數(shù)分別是m,n(m≠n),某次測試數(shù)學(xué)平均分分別是a,b(a≠b),則這兩個班的數(shù)學(xué)平均分為
ma+nb
m+n
,不是
a+b
2
,因此不正確;
對于②,10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是15,17,14,10,15,17,17,16,14,12,設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則a=
1
10
(15+17+…+12)
=14.7,B=
15+15
2
=15,c=17.
∴a<b<c,正確;
對于③,從總體中抽取的樣本(x1,y2),(x2,y2),…(xn,yn),若記
.
x
=
1
n
n
i=1
xi
.
y
=
1
n
n
i=1
yi
,則回歸直線y=bx+a必過點(diǎn)(
.
x
,
.
y
),正確;
對于④,已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ<-2)=0.1.∴P(ξ>2)=0.1,正確;
正確命題為②③④.
故選:C.
點(diǎn)評:本題考查命題真假的判斷,考查均值,眾數(shù)、中位數(shù),回歸方程、正態(tài)分布等基本知識的應(yīng)用,難度不大,但是知識必須到位.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

按1,3,6,10,15,…的規(guī)律給出2014個數(shù),如圖是計算這2014個數(shù)的和的程序框圖,那么框圖中判斷框①處可以填入( 。
A、i≥2014
B、i>2014
C、i≤2014
D、i<2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1-2i
2+i
等于( 。
A、-i
B、-
3
5
i
C、
4+3i
5
D、
4-3i
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(
3a2
+
1
a
n的展開式中含a3項(xiàng),則最小自然數(shù)n是( 。
A、2B、5C、7D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)非零向量
a
,
b
,
c
,滿足|
a
|=|
b
|=|
c
|,
a
+
b
=
c
,
b
c
的夾角為(  )
A、60°B、90°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|3≤x≤8},B={x|x2-8x+12<0},則A∩B=( 。
A、{x|2<x≤8}
B、{x|2<x≤6}
C、{x|3≤x<6}
D、{x|6<x≤8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若p:x2-4x+3>0;q:x2<1,則p是q的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=2sin(2x+
π
4
),
(1)用五點(diǎn)作圖法做出該函數(shù)在一個周期內(nèi)的閉區(qū)間上的簡圖;
(2)該函數(shù)是由函數(shù)y=sinx經(jīng)過怎樣的變換得到的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O的弦CD與直徑AB垂直并交于點(diǎn)F,點(diǎn)E在CD上,且AE=CE.
(1)求證:CA2=CE•CD;
(2)已知CD=5,AE=3,求sin∠EAF.

查看答案和解析>>

同步練習(xí)冊答案