【題目】在三棱柱ABC﹣A1B1C1中,側面ABB1A1為矩形,AB=2,AA1=2 ,D是AA1的中點,BD與AB1交于點O,且CO⊥平面ABB1A1 .
(1)證明:CD⊥AB1;
(2)若OC=OA,求直線CD與平面ABC所成角的正弦值.
【答案】
(1)證明:∵D是矩形AA1的中點,∴AD= AA1= .
∴ = ,∴△DAB∽△ABB1,∴∠ABD=∠AB1B,
∵∠BAB1+∠AB1B=90°,∴∠BAB1+∠ABD=90°,∴BD⊥AB1.
∵CO⊥平面ABB1A1,AB1平面ABB1A1,
∴CO⊥AB1,又CO平面BCD,BD平面BCD,CO∩BD=O,
∴AB1⊥平面BCD,∵CD平面BCD,
∴CD⊥AB1.
(2)解:以O為原點,以OD,OB1,OC為坐標軸建立空間直角坐標系如圖所示:
則A(0,﹣ ,0),B(﹣ ,0,0),C(0,0, ),D( ,0,0).
∴ =( ,0,﹣ ), =(﹣ , ,0), =(0, , ).
設平面ABC的法向量為 =(x,y,z),則 ,
即 ,令x=1得 =(1, ,﹣ ).
∴ = ,∴cos< >= = .
∴直線CD與平面ABC所成角的正弦值為 .
【解析】(1)根據△DAB∽△ABB得出BD⊥AB1 . 根據CO⊥平面ABB1A1得出CO⊥AB1 , 于是AB1⊥平面BCD,從而得出CD⊥AB1;(2)根據三角形相似計算OA,OB,OC,OD,以O為原點建立空間直角坐標系,求出 及平面ABC的法向量 ,計算|cos< >|即可.
科目:高中數學 來源: 題型:
【題目】設S是實數集R的非空子集,若對任意x,y∈S,都有x+y,x-y,xy∈S,則稱S為封閉集.下列命題:①集合S={a+b|a,b為整數}為封閉集;②若S為封閉集,則一定有0∈S;③封閉集一定是無限集;④若S為封閉集,則滿足STR的任意集合T也是封閉集.其中真命題是________.(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的一個頂點為,半焦距為,離心率,又直線交橢圓于, 兩點,且為中點.
(1)求橢圓的標準方程;
(2)若,求弦的長;
(3)若點恰好平分弦,求實數;
(4)若滿足,求實數的取值范圍并求的值;
(5)設圓與橢圓相交于點與點,求的最小值,并求此時圓的方程;
(6)若直線是圓的切線,證明的大小為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l: (t為參數,α≠0)經過橢圓C: (φ為參數)的左焦點F.
(1)求實數m的值;
(2)設直線l與橢圓C交于A、B兩點,求|FA|×|FB|取最小值時,直線l的傾斜角α.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數滿足,.
求函數的解析式;
若關于x的不等式在上恒成立,求實數t的取值范圍;
若函數在區(qū)間內至少有一個零點,求實數m的取值范圍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在籃球比賽中,如果某位球員的得分,籃板,助攻,搶斷,蓋帽中有兩個值達到或以上,就稱該球員拿到了兩雙.下表是某球員在最近五場比賽中的數據統(tǒng)計:
場次 | 得分 | 籃板 | 助攻 | 搶斷 | 蓋帽 |
()從上述比賽中任選場,求該球員拿到“兩雙”的概率.
()從上述比賽中任選場,設該球員拿到“兩雙”的次數為,求的分布列及數學期望.
()假設各場比賽互相獨立,將該球員在上述比賽中獲得“兩雙”的頻率作為概率,設其在接下來的三場比賽中獲得“兩雙”的次數為,試比賽與的大小關系(只需寫出結論).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大學進行自主招生時,需要進行邏輯思維和閱讀表達兩項能力的測試.學校對參加測試的200名學生的邏輯思維成績、閱讀表達成績以及這兩項的總成績進行了排名.其中甲、乙、丙三位同學的排名情況如下圖所示:
得出下面四個結論:
①甲同學的閱讀表達成績排名比他的邏輯思維成績排名更靠前
②乙同學的邏輯思維成績排名比他的閱讀表達成績排名更靠前
③甲、乙、丙三位同學的邏輯思維成績排名中,甲同學更靠前
④乙同學的總成績排名比丙同學的總成績排名更靠前
則所有正確結論的序號是_________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com