【題目】做投擲2個骰子試驗,用(x,y)表示點P的坐標,其中x表示第1個骰子出現(xiàn)的點數(shù),y表示第2個骰子出現(xiàn)的點數(shù).

(1)求點P在直線y=x上的概率.

(2)求點P不在直線y=x+1上的概率.

(3)求點P的坐標(x,y)滿足16<x2+y2≤25的概率.

【答案】(1);(2);(3)

【解析】試題分析:(1)本題是一個古典概型,每顆骰子出現(xiàn)的點數(shù)都有6種情況,基本事件總數(shù)為6×6個,滿足條件的事件可以通過列舉所有的事件,利用古典概型的概率公式得到結(jié)果.
(2)本題是一個古典概型,每顆骰子出現(xiàn)的點數(shù)都有6種情況,基本事件總數(shù)為6×6個,滿足條件的事件可以通過列舉分類得到,利用概率公式得到結(jié)果.
(3)記“點P坐標滿足16<x2+y2≤25”為事件C,則事件C7個基本事件,再利用概率公式得到結(jié)果.

試題解析:

(1)設點P在直線y=x上的事件為A,做該試驗總的基本事件個數(shù)有6×6=36.

事件A包含的基本事件有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)6,

所以P(A)= =.

(2)設點P不在直線y=x+1上的事件為B,

則對立事件包含的基本事件有(1,2),(2,3),(3,4),(4,5),(5,6),5,

所以P(B)=1-P()=1-=.

(3)設點P的坐標(x,y)滿足16<x2+y2≤25的事件為C,事件C包含的基本事件有(1,4),(2,4),(3,3),(3,4),(4,1),(4,2),(4,3),7,所以P(C)= .

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對角線的交點,GPB的中點.

(1)根據(jù)三視圖,畫出該幾何體的直觀圖.

(2)在直觀圖中,①證明:PD∥平面AGC;

②證明:平面PBD⊥平面AGC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(-x2+x-1)ex,其中e是自然對數(shù)的底數(shù).

(1)求曲線f(x)在點(1,f(1))處的切線;

(2)若方程f(x)=x3x2+m有3個不同的根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預賽和決賽兩個階段.下表為10名學生的預賽成績,其中有三個數(shù)據(jù)模糊.

學生序號

1

2

3

4

5

6

7

8

9

10

立定跳遠

(單位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

30秒跳繩

(單位:次)

63

a

75

60

63

72

70

a-1

b

65

在這10名學生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則(  )

A. 2號學生進入30秒跳繩決賽 B. 5號學生進入30秒跳繩決賽

C. 8號學生進入30秒跳繩決賽 D. 9號學生進入30秒跳繩決賽

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率為,直線的兩個交點間的距離為.

)求橢圓的方程;

)分別過滿足,設的上半部分分別交于兩點,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電動小汽車生產(chǎn)企業(yè),年利潤(出廠價投入成本)年銷售量.已知上年度生產(chǎn)電動小汽車的投入成本為萬元/輛,出廠價為萬/輛,年銷售量為輛,本年度為打造綠色環(huán)保電動小汽車,提高產(chǎn)品檔次,計劃增加投入成本,若每輛電動小汽車投入成本增加的比例為),則出廠價相應提高的比例為.同時年銷售量增加的比例為.

(1)寫出本年度預計的年利潤(萬元)與投入成本增加的比例的函數(shù)關(guān)系式;

(2)為了使本年度的年利潤最大,每輛車投入成本增加的比例應為多少?最大年利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

)求方程的實數(shù)解;

)如果數(shù)列滿足,),是否存在實數(shù),使得對所有的都成立?證明你的結(jié)論.

)在()的條件下,設數(shù)列的前項的和為,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,嵩山上原有一條筆直的山路BC,現(xiàn)在又新架設了一條索道AC,小李在山腳B處看索道AC,發(fā)現(xiàn)張角∠ABC=120°;從B處攀登400米到達D處,回頭看索道AC,發(fā)現(xiàn)張角∠ADC=150°;從D處再攀登800米方到達C處,則索道AC的長為________米.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sinωx·cosωx-cos2ωx(ω>0)的最小正周期為.

(1)求ω的值;

(2)在△ABC中,sinB,sinA,sinC成等比數(shù)列,求此時f(A)的值域.

查看答案和解析>>

同步練習冊答案