【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.
(1)求k的取值范圍;
(2)若=12,其中O為坐標原點,求|MN|.
【答案】(1);(2)2.
【解析】試題分析:(1)由題意可得,直線l的斜率存在,用點斜式求得直線l的方程,根據(jù)圓心到直線的距離等于半徑求得k的值,可得滿足條件的k的范圍.
(2)由題意可得,經(jīng)過點M、N、A的直線方程為y=kx+1,根據(jù)直線和圓相交的弦長公式進行求解
試題解析:(1)由題意可得,直線l的斜率存在,
設(shè)過點A(0,1)的直線方程:y=kx+1,即:kx-y+1=0.
由已知可得圓C的圓心C的坐標(2,3),半徑R=1.
故由,解得: .
故當,過點A(0,1)的直線與圓C: 相交于M,N兩點.
(2)設(shè)M;N,
由題意可得,經(jīng)過點M、N、A的直線方程為y=kx+1,代入圓C的方程,
可得,
∴,
∴,
由,解得 k=1,
故直線l的方程為 y=x+1,即 x-y+1=0.圓心C在直線l上,MN長即為圓的直徑.所以|MN|=2
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的中心在原點焦點在 軸上,離心率等于 ,它的一個頂點恰好是拋物線 的焦點.
(1)求橢圓 的焦點;
(2)已知點 在橢圓 上,點 是橢圓 上不同于 的兩個動點,且滿足: ,試問:直線 的斜率是否為定值?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點 , 為圓 上任意一點,線段 上一點 滿足 ,直線 上一點 ,滿足 .
(1)當 在圓周上運動時,求點 的軌跡 的方程;
(2)若直線 與曲線 交于 兩點,且以 為直徑的圓過原點 ,求證:直線 與 不可能相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體 為一簡單組合體,在底面 中, , , , 平面 , , , .
(1)求證:平面 平面 ;
(2)求該組合體 的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2.
(1)求{an}的通項公式.
(2)設(shè)等比數(shù)列{bn}滿足b2=a3,b3=a7.問:b6與數(shù)列{an}的第幾項相等?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項均不相等的等差數(shù)列{an}的前n項和為Sn,S10=45,且a3,a5,a9恰為等比數(shù)列{bn}的前三項,記 .
(1)分別求數(shù)列{an}、{bn}的通項公式;
(2)若m=17,求cn取得最小值時n的值;
(3)當c1為數(shù)列{cn}的最小項時, 有相應(yīng)的可取值,我們把所有am的和記為A1;…;當ci為數(shù)列的最小項時,有相應(yīng)的可取值,我們把所有am的和記為Ai;…,令Tn= A1+ A2+…+An,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ,過點作圓的切線交橢圓于、兩點.
(Ⅰ)求橢圓的焦點坐標和離心率;
(Ⅱ)將表示成的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù),且,若,時,有.
(1)證明在上是增函數(shù);
(2)解不等式;
(3)若對,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com