【題目】設(shè)函數(shù) .
(1)求f(x)的單調(diào)區(qū)間及最大值;
(2)討論關(guān)于x的方程|lnx|=f(x)根的個(gè)數(shù).
【答案】
(1)解:∵ = ,解f′(x)>0,得 ;解f′(x)<0,得 .
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為 ;單調(diào)遞減區(qū)間為 .
故f(x)在x= 取得最大值,且
(2)解:函數(shù)y=|lnx|,當(dāng)x>0時(shí)的值域?yàn)閇0,+∞).如圖所示:
①當(dāng)0<x≤1時(shí),令u(x)=﹣lnx﹣ ﹣c,
c= =g(x),
則 =- .
令h(x)=e2x+x﹣2x2,則h′(x)=2e2x+1﹣4x>0,∴h(x)在x∈(0,1]單調(diào)遞增,
∴1=h(0)<h(x)≤h(1)=e2﹣1.
∴g′(x)<0,∴g(x)在x∈(0,1]單調(diào)遞減.
∴c .
②當(dāng)x≥1時(shí),令v(x)=lnx﹣ -c,得到c=lnx﹣ =m(x),
則 = >0,
故m(x)在[1,+∞)上單調(diào)遞增,∴c≥m(1)= .
綜上①②可知:當(dāng) 時(shí),方程|lnx|=f(x)無(wú)實(shí)數(shù)根;
當(dāng) 時(shí),方程|lnx|=f(x)有一個(gè)實(shí)數(shù)根;
當(dāng) 時(shí),方程|lnx|=f(x)有兩個(gè)實(shí)數(shù)根.
【解析】(1)利用導(dǎo)數(shù)的運(yùn)算法則求出f′(x),分別解出f′(x)>0與f′(x)<0即可得出單調(diào)區(qū)間及極值與最值;(2)分類(lèi)討論:①當(dāng)0<x≤1時(shí),令u(x)=﹣lnx﹣ ﹣c,②當(dāng)x≥1時(shí),令v(x)=lnx﹣ -c.利用導(dǎo)數(shù)分別求出c的取值范圍,即可得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲廠以x千克/小時(shí)的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時(shí)可獲得的利潤(rùn)是100(5x+1﹣ )元.
(1)要使生產(chǎn)該產(chǎn)品2小時(shí)獲得的利潤(rùn)不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤(rùn)最大,問(wèn):甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一(1)班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見(jiàn)部分如圖.
(1)求分?jǐn)?shù)在的頻數(shù)及全班人數(shù);
(2)求分?jǐn)?shù)在之間的頻數(shù),并計(jì)算頻率分布直方圖中間矩形的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),函數(shù)的圖象恒不在軸的上方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩支排球隊(duì)進(jìn)行比賽,先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊(duì)獲勝的概率是 ,其余每局比賽甲隊(duì)獲勝的概率都是 .設(shè)各局比賽結(jié)果相互獨(dú)立.
(1)分別求甲隊(duì)3:0,3:1,3:2勝利的概率;
(2)若比賽結(jié)果3:0或3:1,則勝利方得3分,對(duì)方得0分;若比賽結(jié)果為3:2,則勝利方得2分,對(duì)方得1分,求乙隊(duì)得分X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,若普通6座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車(chē)輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就是越高,具體浮動(dòng)情況如下表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% | |
上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% | |
上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了 某一品牌普通6座以下私家車(chē)的投保情況,隨機(jī)抽取了60輛車(chē)齡已滿(mǎn)三年的該品牌同型號(hào)私家車(chē)的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類(lèi)型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車(chē)的投保類(lèi)型的頻率代替一輛車(chē)投保類(lèi)型的概率,完成下列問(wèn)題:
(1)按照我國(guó)《機(jī)動(dòng)車(chē)交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車(chē)交強(qiáng)險(xiǎn)價(jià)格的規(guī)定, ,記為某同學(xué)家的一輛該品牌車(chē)在第四年續(xù)保時(shí)的費(fèi)用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)
(2)某二手車(chē)銷(xiāo)售商專(zhuān)門(mén)銷(xiāo)售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車(chē)輛記為事故車(chē),假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損5000元,一輛非事故車(chē)盈利10000元:
①若該銷(xiāo)售商購(gòu)進(jìn)三輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),求這三輛車(chē)中至多有一輛事故車(chē)的概率;
②若該銷(xiāo)售商一次購(gòu)進(jìn)100輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),求他獲得利潤(rùn)的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線(xiàn):.設(shè)圓的半徑為1,圓心在上.
(1)若圓心也在直線(xiàn)上,過(guò)點(diǎn)作圓的切線(xiàn),求切線(xiàn)的方程;
(2)若圓心上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生平均每天課外體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉的時(shí)間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均課外體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的列聯(lián)表;
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
(2)通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“課外體育達(dá)標(biāo)”性別有關(guān)?
參考公式,其中
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)隨機(jī)詢(xún)問(wèn)110名不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
經(jīng)計(jì)算的觀測(cè)值. 參照附表,得到的正確結(jié)論是
附表:
男 | 女 | 總計(jì) | |
愛(ài)好 | 40 | 20 | 60 |
不愛(ài)好 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
A. 有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B. 有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com