Processing math: 2%
7.已知橢圓C的中心在坐標(biāo)原點(diǎn)O,左焦點(diǎn)為F(-l,0),離心率為22
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)F的直線,與橢圓C交于A、B兩點(diǎn),設(shè)\overrightarrow{AF}=λ\overrightarrow{FB}(其中1<入<3),求\overrightarrow{OA}•\overrightarrow{OB}的取值范圍.

分析 (1)由c=1,e=\frac{c}{a}=\frac{{\sqrt{2}}}{2},b2=a2-c2,求得a和b的值,求得橢圓方程;
(2)由題意可知設(shè)直線方程,將直線方程代入橢圓方程,由韋達(dá)定理可知求得y1+y2,y1•y2,由\overrightarrow{AF}=λ\overrightarrow{FB}(其中1<λ<3),可知:y1=-λy2,構(gòu)造輔助函數(shù)t=λ+\frac{1}{λ}-2,t∈(0,3),代入求得m2=\frac{2t}{4-t},根據(jù)向量數(shù)量積的坐標(biāo)表示求得\overrightarrow{OA}•\overrightarrow{OB}=\frac{1-2{m}^{2}}{2+{m}^{2}},m2=\frac{2t}{4-t},根據(jù)一次函數(shù)的單調(diào)性即可求得\overrightarrow{OA}•\overrightarrow{OB}的取值范圍.

解答 解:(1)由題意可知:設(shè)橢圓方程為:\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0),
c=1,橢圓的離心率e=\frac{c}{a}=\frac{{\sqrt{2}}}{2},
∴a=\sqrt{2},
由b2=a2-c2=1,
∴橢圓的方程為:\frac{{x}^{2}}{2}+{y}^{2}=1;
(2)\overrightarrow{AF}=λ\overrightarrow{FB}(其中1<λ<3),可知直線斜率不為0,
設(shè)直線l:x=my-1,A(x1,y1),B(x2,y2),
∴y1=-λy2,
\left\{\begin{array}{l}{x=my-1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.,整理得:(2+m2)y2-2my-1=0,
由韋達(dá)定理可知:y1+y2=\frac{2m}{2+{m}^{2}},y1•y2=\frac{-1}{2+{m}^{2}}
\frac{4{m}^{2}}{2+{m}^{2}}=\frac{(1-λ)^{2}}{λ}=λ+\frac{1}{λ}-2,
令t=λ+\frac{1}{λ}-2,t∈(0,\frac{4}{3}),
可得:m2=\frac{2t}{4-t},
\overrightarrow{OA}•\overrightarrow{OB}=x1•x2+y1•y2=(my1-1)(my2-1)+y1•y2,
=(1+m2)y1•y2-m(y1+y2)+1,
=\frac{1-2{m}^{2}}{2+{m}^{2}},
將m2=\frac{2t}{4-t}代入整理得:\overrightarrow{OA}•\overrightarrow{OB}=\frac{4-5t}{8},t∈(0,\frac{4}{3}),
由f(t)=\frac{4-5t}{8},在(0,\frac{4}{3})單調(diào)遞減,
\overrightarrow{OA}•\overrightarrow{OB}∈(-\frac{1}{3},\frac{1}{2}).

點(diǎn)評(píng) 本題考查橢圓的方程及簡(jiǎn)單幾何性質(zhì),考查直線與橢圓的位置關(guān)系,韋達(dá)定理向量數(shù)量積的坐標(biāo)運(yùn)算,函數(shù)的最值,考查構(gòu)造法,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)△ABC的三個(gè)內(nèi)角A,B,C所對(duì)應(yīng)的邊為a,b,c,若A,B,C依次成等差數(shù)列且a2+c2=kb2,則實(shí)數(shù)k的取值范圍是(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.不等式(x-1)2>4的解集是{x|x<-1或x>3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.“a>1”是“f(x)=(a-1)•ax在定義域內(nèi)為增函數(shù)”的( �。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知△ABC中,a=2,b=3,cosC=\frac{3}{5},此三角形的面積S等于( �。�
A.\frac{9}{5}B.\frac{12}{5}C.\frac{18}{5}D.\frac{24}{5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若點(diǎn)(2,\sqrt{2})在冪函數(shù)f(x)=xa的圖象上,則f(\frac{1}{4})=\frac{1}{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=\frac{1}{3}x3+\frac{1}{2}x2+mx+n以(0,a)為切點(diǎn)的切線方程是2x+y-2=0
(Ⅰ)求實(shí)數(shù)m,n的值;
(Ⅱ)若方程f(x)=x2+b在[-\frac{3}{2},3]上有兩個(gè)不等實(shí)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=2sin(ωx+ϕ),ω>0,0≤ϕ≤π是R上的偶函數(shù),且最小正周期為π
(1)求f(x)的解析式;
(2)用“五點(diǎn)法”作出函數(shù)f(x)的一個(gè)周期內(nèi)的圖象;
(3)求g(x)=f(x+\frac{π}{6})的對(duì)稱軸及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.四棱錐P-ABCD的底面是菱形,∠BAD=60°,PA⊥底面ABCD,PA=AB=a,E為棱PC上點(diǎn).
(1)面EBD與面PAC能否始終垂直,證明你的結(jié)論;
(2)若E為PC中點(diǎn),求異面直線BE與PA所成角;
(3)當(dāng)△EBD面積最小時(shí),求E-BDC體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案