函數(shù)f(x)=log
1
2
(x2-ax)
在區(qū)間(1,2)內(nèi)是減函數(shù),則實數(shù)a的取值范圍是(  )
分析:由題意知函數(shù)f(x)=log
1
2
(x2-ax)
是由y=log
1
2
t
和t(x)=x2-ax復(fù)合而來,由復(fù)合函數(shù)單調(diào)性結(jié)論,只要t(x)在區(qū)間(1,2)上單調(diào)遞增且t(x)>0即可
解答:解:令t(x)=x2-ax,由題意t(x)在區(qū)間(1,2)上單調(diào)遞增且t(x)>0
由t(x)=x2-ax的圖象為開口向上的拋物線,且對稱軸為直線x=
a
2
,
故只需
a
2
≤1,且t(1)=1-a≥0即可,解得a≤1,
故選C.
點評:本題考查復(fù)合函數(shù)的單調(diào)性和二次函數(shù)的性質(zhì),其中t(x)>0在(1,2)上成立是解答中容易漏掉的,而對復(fù)合函數(shù)的分解是解決本類問題的根本,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、設(shè)函數(shù)f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,則f(x12)+f(x22)+…f(x102)等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是減函數(shù),則實數(shù)a的范圍是(  )
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log 2(x2-x-2)
(1)求f(x)的定義域;
(2)當(dāng)x∈[3,4]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有三個命題:“①0<
1
2
<1.②函數(shù)f(x)=log 
1
2
x是減函數(shù).③當(dāng)0<a<1時,函數(shù)f(x)=logax是減函數(shù)”.當(dāng)它們構(gòu)成三段論時,其“小前提”是
(填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•茂名二模)設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=log 
1
2
x為(0,+∞)上的高調(diào)函數(shù);
②函數(shù)f(x)=sinx為R上的高調(diào)函數(shù);
③如果定義域為[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的高調(diào)函數(shù),那么實數(shù)m的取值范圍是[2,+∞);
其中正確的命題的個數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案