【題目】如圖所示,底面為平行四邊形ABCD的四棱錐P-ABCD,EPC的中點(diǎn).求證:PA∥平面BDE.(要求注明每一步推理的大前提、小前提和結(jié)論,并最終把推理過程用簡略的形式表示出來)

【答案】見解析

【解析】

(1)三角形的中位線與底邊平行(大前提),

連接ACBDO,連接OE,由已知OE△PAC的中位線(小前提),

所以PA∥OE(結(jié)論).

(2)平面外一條直線和平面內(nèi)一直線平行,則平面外的直線與該平面平行(大前提),

PA平面BDE,OE平面BDE(小前提),

所以PA∥平面BDE(結(jié)論).

上面的證明可簡略地寫成:

連接ACBDO.連接OE,

四邊形ABCD為平行四邊形,

∴OAC的中點(diǎn).

∵EPC的中點(diǎn),

△PAC,PA∥OE,OE平面BDE,PA平面BDE,

∴PA∥平面BDE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的極坐標(biāo)方程及曲線的直角坐標(biāo)方程;

(2)若是直線上一點(diǎn),是曲線上一點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1時(shí),求的單調(diào)區(qū)間和最值;

2)①若對(duì)于任意的,不等式恒成立,求的取值范圍;②求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)老師給出一個(gè)函數(shù),甲、乙、丙、丁四個(gè)同學(xué)各說出了這個(gè)函數(shù)的一條性質(zhì):甲:在 上函數(shù)單調(diào)遞減;乙:在上函數(shù)單調(diào)遞增;丙:在定義域R上函數(shù)的圖象關(guān)于直線對(duì)稱;。不是函數(shù)的最小值.老師說:你們四個(gè)同學(xué)中恰好有三個(gè)人說的正確.那么,你認(rèn)為____說的是錯(cuò)誤的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若,求曲線處的切線方程;

(2)若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)的名同學(xué)準(zhǔn)備拼車去旅游,其中大一、大二、大三、大四每個(gè)年級(jí)各兩名,分乘甲、乙兩輛汽車.每車限坐名同學(xué)(乘同一輛車的名同學(xué)不考慮位置),其中大一的孿生姐妹需乘同一輛車,則乘坐甲車的名同學(xué)中恰有名同學(xué)是來自于同一年級(jí)的乘坐方式共有_______種(有數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的方程為.曲線的參數(shù)方程為為參數(shù)).

(1)求的直角坐標(biāo)方程;

(2)若有三個(gè)不同的公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在含有個(gè)元素的集合中,若這個(gè)元素的一個(gè)排列(,…,)滿足,則稱這個(gè)排列為集合的一個(gè)錯(cuò)位排列(例如:對(duì)于集合,排列的一個(gè)錯(cuò)位排列;排列不是的一個(gè)錯(cuò)位排列).記集合的所有錯(cuò)位排列的個(gè)數(shù)為.

(1)直接寫出,,,的值;

(2)當(dāng)時(shí),試用表示,并說明理由;

(3)試用數(shù)學(xué)歸納法證明:為奇數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)若函數(shù)處取得極大值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案