【題目】如圖所示,底面為平行四邊形ABCD的四棱錐P-ABCD中,E為PC的中點(diǎn).求證:PA∥平面BDE.(要求注明每一步推理的大前提、小前提和結(jié)論,并最終把推理過程用簡略的形式表示出來)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的極坐標(biāo)方程及曲線的直角坐標(biāo)方程;
(2)若是直線上一點(diǎn),是曲線上一點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)時(shí),求的單調(diào)區(qū)間和最值;
(2)①若對(duì)于任意的,不等式恒成立,求的取值范圍;②求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)老師給出一個(gè)函數(shù),甲、乙、丙、丁四個(gè)同學(xué)各說出了這個(gè)函數(shù)的一條性質(zhì):甲:在 上函數(shù)單調(diào)遞減;乙:在上函數(shù)單調(diào)遞增;丙:在定義域R上函數(shù)的圖象關(guān)于直線對(duì)稱;。不是函數(shù)的最小值.老師說:你們四個(gè)同學(xué)中恰好有三個(gè)人說的正確.那么,你認(rèn)為____說的是錯(cuò)誤的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,求曲線在處的切線方程;
(2)若對(duì)任意的,,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)的名同學(xué)準(zhǔn)備拼車去旅游,其中大一、大二、大三、大四每個(gè)年級(jí)各兩名,分乘甲、乙兩輛汽車.每車限坐名同學(xué)(乘同一輛車的名同學(xué)不考慮位置),其中大一的孿生姐妹需乘同一輛車,則乘坐甲車的名同學(xué)中恰有名同學(xué)是來自于同一年級(jí)的乘坐方式共有_______種(有數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的方程為.曲線的參數(shù)方程為(為參數(shù)).
(1)求的直角坐標(biāo)方程;
(2)若與有三個(gè)不同的公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在含有個(gè)元素的集合中,若這個(gè)元素的一個(gè)排列(,,…,)滿足,則稱這個(gè)排列為集合的一個(gè)錯(cuò)位排列(例如:對(duì)于集合,排列是的一個(gè)錯(cuò)位排列;排列不是的一個(gè)錯(cuò)位排列).記集合的所有錯(cuò)位排列的個(gè)數(shù)為.
(1)直接寫出,,,的值;
(2)當(dāng)時(shí),試用,表示,并說明理由;
(3)試用數(shù)學(xué)歸納法證明:為奇數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若函數(shù)在處取得極大值,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com