【題目】已知數(shù)列是公比大于的等比數(shù)列,為數(shù)列的前項(xiàng)和,,且,,成等差數(shù)列.數(shù)列的前項(xiàng)和為,滿足,且

1)求數(shù)列的通項(xiàng)公式;

2)令,求數(shù)列的前項(xiàng)和為;

3)將數(shù)列的項(xiàng)按照當(dāng)為奇數(shù)時(shí),放在前面;當(dāng)為偶數(shù)時(shí),放在前面的要求進(jìn)行排列,得到一個(gè)新的數(shù)列:,,,,,,,,求這個(gè)新數(shù)列的前項(xiàng)和.

【答案】(1),(2)(3)

【解析】

1)設(shè)等比數(shù)列的公比為,依題意得到關(guān)于的方程組解得,由,可知是首項(xiàng)為,公差為的等差數(shù)列,求出的通項(xiàng)公式,即可求出的通項(xiàng)公式;

(2)利用分組求和,錯(cuò)位相減,裂項(xiàng)相消求其前項(xiàng)和為;

3)分,,,三種情況討論可得;

解:(1)設(shè)等比數(shù)列的公比為,

由已知,得

,也即

解得

故數(shù)列的通項(xiàng)為.

,

是首項(xiàng)為,公差為的等差數(shù)列,

,

2

其中

①減②得

(3)數(shù)列項(xiàng)和,數(shù)列的前項(xiàng)和

①當(dāng),

②當(dāng)

⑴當(dāng)時(shí),

⑵當(dāng)時(shí),

③當(dāng)

綜上

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線交曲線,兩點(diǎn),交曲線,兩點(diǎn),求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,射線的普通方程為,曲線的參數(shù)方程為為參數(shù)).O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫出的極坐標(biāo)方程;

2)設(shè)的交點(diǎn)為P(點(diǎn)P不為極點(diǎn)),的交點(diǎn)為Q,當(dāng)上變化時(shí),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體中,、分別是棱的中點(diǎn),、分別是線段上的點(diǎn),則與平面平行的直線有(

A.0B.1C.2D.無(wú)數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有次水下考古活動(dòng)中,潛水員需潛入水深為30米的水底進(jìn)行作業(yè),其用氧量包含以下三個(gè)方面:①下潛時(shí),平均速度為每分鐘米,每分鐘的用氧量為升;②水底作業(yè)需要10分鐘,每分鐘的用氧量為0.3升;③返回水面時(shí),速度為每分鐘米,每分鐘用氧量為0.2升;設(shè)潛水員在此次考古活動(dòng)中的總用氧量為升;

(1)將表示為的函數(shù);

(2)若,求總用氧量的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax+blnx(a,bR)在點(diǎn)(1,f(1))處的切線方程為yx1.

(1)求ab的值;

(2)當(dāng)x>1時(shí),f(x)0恒成立,求實(shí)數(shù)k的取值范圍;

(3)設(shè)g(x)=exx,求證:對(duì)于x∈(0,+∞),g(x)﹣f(x)>2恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于定義在上的函數(shù),若存在正常數(shù),使得對(duì)一切均成立,則稱是“控制增長(zhǎng)函數(shù)”,在以下四個(gè)函數(shù)中:①;②;③;④.是“控制增長(zhǎng)函數(shù)”的有(

A.②③B.③④C.②③④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)且在上的最大值為

1)求函數(shù)f(x)的解析式;

(2)判斷函數(shù)f(x)在(0π)內(nèi)的零點(diǎn)個(gè)數(shù),并加以證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國(guó)特色社會(huì)主義生態(tài)文明的價(jià)值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)()的檢測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

天數(shù)

6

14

18

27

25

10

1)從空氣質(zhì)量指數(shù)屬于,的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;

2)已知某企業(yè)每天的經(jīng)濟(jì)損失(單位:元)與空氣質(zhì)量指數(shù)的關(guān)系式為,試估計(jì)該企業(yè)一個(gè)月(按30天計(jì)算)的經(jīng)濟(jì)損失的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案