【題目】已知

(1)當(dāng)時(shí),求的值域;

(2)若b為正實(shí)數(shù),的最大值為M,最小值為m,且滿足,求b的取值范圍.

【答案】見解析

【解析】1當(dāng)時(shí),

因?yàn)?/span>[1,]上單調(diào)遞減,在[2]上單調(diào)遞增,

所以的最小值為.

,所以的值域?yàn)?/span>[0]

2當(dāng)0b2時(shí),[1,2]上單調(diào)遞增,

,M1,

此時(shí)Mm=-1≥4,得b6,與0b2矛盾,舍去;

當(dāng)2≤b4時(shí),[1]上單調(diào)遞減,在[2]上單調(diào)遞增,

所以,,則 ,得(1)2≥4,解得b≥9,與2≤b4矛盾,舍去;

當(dāng)b≥4時(shí),[1,2]上單調(diào)遞減,

Mb2,m1,此時(shí)Mm1≥4,得b≥10.

綜上所述,b的取值范圍是[10,+∞)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十八屆五種全會(huì)公報(bào)指出:努力促進(jìn)人口均衡發(fā)展,堅(jiān)持計(jì)劃生育的基本國(guó)策,完善人口發(fā)展戰(zhàn)略,全面實(shí)施一對(duì)夫婦可生育兩個(gè)孩子的政策,提高生殖保健、婦幼保健、托兒等公共服務(wù)水平.為了解適齡公務(wù)員對(duì)放開生育二胎政策的態(tài)度,某部門隨機(jī)調(diào)查了100位30到40歲的公務(wù)員,得到情況如下表:

男公務(wù)員

女公務(wù)員

生二胎

40

20

不生二胎

20

20

(1)是否有95%以上的把握認(rèn)為“生二胎與性別有關(guān)”,并說明理由;

(2)把以上頻率當(dāng)概率,若從社會(huì)上隨機(jī)抽取3位30到40歲的男公務(wù)員,記其中生二胎的人數(shù)為,求隨機(jī)變量的分布列,數(shù)學(xué)期望.

0.050

0.010

0.001

3.841

6.635

10.828

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線,曲線為參數(shù)), 以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程;

(2)若射線分別交兩點(diǎn), 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)多面體的直觀圖及三視圖如圖所示,分別是的中點(diǎn).

I)求證:平面;

II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)設(shè),

①記的導(dǎo)函數(shù)為,求;

②若方程有兩個(gè)不同實(shí)根,求實(shí)數(shù)的取值范圍;

(2)若在上存在一點(diǎn)使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)處取最小值.

(1)的值,并化簡(jiǎn) ;

(2)ABC中,分別是角A,B, C的對(duì)邊已知,求角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1,a14=b4.

(1)求{an}的通項(xiàng)公式;

(2)設(shè)cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點(diǎn).

(1)求k的取值范圍;

(2)若=12,其中O為坐標(biāo)原點(diǎn),求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2acos θ(a>0),過點(diǎn)P(-2,-4)的直線l: (t為參數(shù))與曲線C相交于M,N兩點(diǎn).

(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;

(2)若|PM|,|MN|,|PN|成等比數(shù)列,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案