【題目】如圖所示,海中一小島C周圍nmile內有暗礁,貨輪由西向東航行至A處測得小島C位于北偏東75°方向上,航行8nmile后,于B處測得小島C在北偏東60°方向上.

1)如果這艘貨輪不改變航向繼續(xù)前進,有沒有觸礁的危險?請說明理由.

2)如果有觸礁的危險,這艘貨輪在B處改變航向為南偏東α°α>0)方向航行,順利繞過暗礁,求a的最大值.(附:

【答案】(1)有,詳見解析(2)a的最大值為

【解析】

1)(方法一):過點CAB的垂線,交AB延長線于點D.,在RtBCD中,可求出,從而可判斷是否有觸礁的危險;

(方法二)過點CAB的垂線,交AB延長線于點D,設垂線段CD的長度為xnmileBDynmile,從而可得進而可求出x=4,

2)延長CDE,使nmile,并連接BE,結合(1),在中即可求解.

解:(1)(方法一):有.

理由:如圖,過點CAB的垂線,交AB延長線于點D.

由已知得∠CAB=15°,∠CBD=30°,所以∠ACB=15°,

所以AB=BC=8nmile,所以在RtBCD中,nmile.

,所以貨輪有觸礁的危險.

(方法二)有.

理由:如圖,過點CAB的垂線,交AB延長線于點D,

設垂線段CD的長度為xnmileBDynmile.

所以,解得x=4.

因為,所以貨輪有觸礁的危險.

2)如圖,延長CDE,使nmile,并連接BE,

nmile

由(1)得nmile,

所以.

因為,

所以,即.

所以.

所以α的最大值為75.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】

對定義在區(qū)間上的函數(shù),若存在閉區(qū)間和常數(shù),使得對任意的都有,且對任意的都有恒成立,則稱函數(shù)為區(qū)間上的“U函數(shù)。

1)求證:函數(shù)上的“U函數(shù);

2)設是(1)中的“U函數(shù),若不等式對一切的恒成立,求實數(shù)的取值范圍;

3)若函數(shù)是區(qū)間上的“U函數(shù),求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù)

(Ⅰ)求值;

(Ⅱ)判斷并證明該函數(shù)在定義域上的單調性;

(Ⅲ)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

(Ⅳ)設關于的函數(shù)有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)指出函數(shù)的基本性質:定義域,奇偶性,單調性,值域(結論不需證明),并作出函數(shù)的圖象;

2)若關于的不等式恒成立,求實數(shù)的取值范圍;

3)若關于的方程恰有個不同的實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,要測量山頂上的電視塔FG的高度,已知山的西面有一棟樓AC(該樓的高度低于山的高度).試設計在樓AC上測山頂電視塔高度的測量、計算方案.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最大值為.

(1)若關于的方程的兩個實數(shù)根為,求證:

(2)當時,證明函數(shù)在函數(shù)的最小零點處取得極小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:

①回歸直線過樣本點中心(

②將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,平均值不變

③將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變

④在回歸方程4x+4中,變量x每增加一個單位時,y平均增加4個單位

其中錯誤命題的序號是( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某育種基地對某個品種的種子進行試種觀察,經(jīng)過一個生長期培養(yǎng)后,隨機抽取株作為樣本進行研究。株高在及以下為不良,株高在之間為正常,株高在及以上為優(yōu)等。下面是這個樣本株高指標的莖葉圖和頻率分布直方圖,但是由于數(shù)據(jù)遞送過程出現(xiàn)差錯,造成圖表損毀。請根據(jù)可見部分,解答下面的問題:

1)求的值并在答題卡的附圖中補全頻率分布直方圖;

2)通過頻率分布直方圖估計這株株高的中位數(shù)(結果保留整數(shù));

3)從育種基地內這種品種的種株中隨機抽取2株,記表示抽到優(yōu)等的株數(shù),由樣本的頻率作為總體的概率,求隨機變量的分布列(用最簡分數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點與其短軸的一個端點是正三角形的三個頂點,點在橢圓上,直線與橢圓交于,兩點,與軸、軸分別相交于點和點,且,點是點關于軸的對稱點,的延長線交橢圓于點,過點、分別做軸的垂線,垂足分別為、.

(1)求橢圓的方程;

(2)是否存在直線,使得點平分線段,?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案