設(shè)函數(shù)

(Ⅰ)求函數(shù)的極值點(diǎn);(Ⅱ)當(dāng)p>0時(shí),若對(duì)任意的x>0,恒有,求p的取值范圍;

 (Ⅲ)證明:

 

【答案】

(1)當(dāng)p>0 時(shí),有唯一的極大值點(diǎn) 

(Ⅱ)p的取值范圍為[1,+∞   (Ⅲ)略

【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

(1)根據(jù)已知條件可知,

當(dāng) 上無(wú)極值點(diǎn)

當(dāng)p>0時(shí),則結(jié)合極值的概念得到結(jié)論。

(2)當(dāng)p>0時(shí)在處取得極大值,此極大值也是最大值,

要使恒成立,只需

(3)令p=1,由(Ⅱ)知,

運(yùn)用放縮法得到結(jié)論

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對(duì)稱軸是直線x=
π8

(Ⅰ)求φ;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)區(qū)間及最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2sin(2x+
π4
)+1,
(I)用五點(diǎn)法畫(huà)出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;
(II)求函數(shù)f(x)的最小正周期及函數(shù)f(x)的最大值
(III)求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=msinx+
2
cosx,(m為常數(shù),且m>0),已知函數(shù)f(x)的最大值為2.
(I)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(II)已知a,b,c是△ABC的三邊,且b2=ac.若,f(B)=
3
,求B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義在R上的函數(shù)f(x)=a0x4+a1x3+a2x+a3(a0,a1,a2,a3∈R),當(dāng)x=-1時(shí),f(x)取極大值
2
3
,且函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,0)對(duì)稱.
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)試在函數(shù)y=f(x)的圖象上求兩點(diǎn),使以這兩點(diǎn)為切點(diǎn)的切線互相垂直,且切點(diǎn)的橫坐標(biāo)都在[-
2
,
2
]
上;
(Ⅲ)設(shè)xn∈[
1
2
,1)
,ym∈(-
2
,-
2
3
2
]
,求證:|f(xn)-f(ym)|<
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•普陀區(qū)一模)設(shè)函數(shù)f(x)和x都是定義在集合
2
上的函數(shù),對(duì)于任意的
2
x,都有x成立,稱函數(shù)x與y在l上互為“l(fā)函數(shù)”.
(1)函數(shù)f(x)=2x與g(x)=sinx在M上互為“H函數(shù)”,求集合M;
(2)若函數(shù)f(x)=ax(a>0且a≠1)與g(x)=x+1在集合M上互為“x函數(shù)”,求證:a>1;
(3)函數(shù)m與m在集合M={x|x>-1且x≠2k-3,k∈N*}上互為“m函數(shù)”,當(dāng)m時(shí),m,且m在m上是偶函數(shù),求函數(shù)m在集合M上的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案