精英家教網(wǎng)在長方體ABCD-A1B1C1D1中,AA1=AD=2,點E在棱CD上,且CE=
1
3
CD

(1)求證:AD1⊥平面A1B1D;
(2)在棱AA1上是否存在點P,使DP∥平面B1AE?若存在,求出線段AP的長;若不存在,請說明理由;
(3)若二面角A-B1E-A1的余弦值為
30
6
,求棱AB的長.
分析:(1)利用長方體和正方體的性質(zhì)、線面垂直的判定定理即可證明;
(2)通過建立空間直角坐標(biāo)系,若DP∥平面AB1E,設(shè)
n
為平面AB1E的法向量?
DP
n
=0
,且
DP
?平面AB1E,求出即可;
(3)利用(1)(2)的結(jié)論即可得到此二面角的兩個面的法向量,進(jìn)而利用法向量的夾角即可得到二面角的余弦值,解出即可.
解答:(1)證明:在長方體ABCD-A1B1C1D1中,∵A1B1⊥面A1D1DA,精英家教網(wǎng)
∴A1B1⊥AD1.   
在矩形A1D1DA中,∵AA1=AD=2,
∴AD1⊥A1D.
又A1D∩A1B1=A1
∴AD1⊥平面A1B1D.
(2)如圖,在長方體ABCD-A1B1C1D1中,以D1為原點建立空間直角坐標(biāo)系D1-xyz.
依題意可知,D1(0,0,0),A1(2,0,0),D(0,0,2),A(2,0,2),
設(shè)AB的長為x,則C1(0,x,0),B1(2,x,0),C(0,x,2),E(0,
2
3
x,2)

假設(shè)在棱AA1上存在點P,使得DP∥平面B1AE.
設(shè)點P(2,0,y),則
DP
=(2,0,y-2)
AP
=(0,0,y-2)

易知
B1E
=(-2,-
1
3
x,2),
AE
=(-2,
2
3
x,0)

設(shè)平面B1AE的一個法向量為n=(a,b,c),
B1E
n
=0
AE
n
=0
,即
-2a-
1
3
xb+2c=0
-2a+
2
3
xb=0

令b=3得,a=x,c=
3
2
x
,∴
n
=(x,3,
3
2
x)

∵DP∥平面B1AE,∴
DP
n
=0
且DP?平面B1AE.
2x+(y-2)•
3
2
x=0
,∴y=
2
3

AP
=(0,0,-
4
3
)
,|
AP
|=
4
3
,
∴AP的長為
4
3

(3)∵CD∥A1B1,且點E∈CD,
∴平面A1B1E、平面A1B1D與面A1B1CD是同一個平面.
由(1)可知,AD1⊥面A1B1D,
D1A
=(2,0,2)
是平面A1B1E的一個法向量.  
由(2)可知,平面B1AE的一個法向量為n=(x,3,
3
2
x)

∵二面角A-B1E-A1的余弦值為
30
6

cosθ=
30
6
=
|
D1A
n
|
|
D1A
| |
n
|
=
|2x+3x|
2
2
x2+9+(
3
2
x)2
,解得x=3
2

故AB的長為3
2
點評:熟練掌握長方體和正方體的性質(zhì)、線面垂直的判定定理、通過建立空間直角坐標(biāo)系的方法求出平面的法向量并利用法向量及其數(shù)量積即可求出線面角、二面角是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在長方體ABCD-A'B'C'D'中,AB=
3
,AD=
3
,AA′=1,則AA′和BC′所成的角是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A′B′C′D′中,用截面截下一個棱錐C-A′DD′,求棱錐C-A′DD′的體積與剩余部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海) 如圖,在長方體ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.證明直線BC′平行于平面D′AC,并求直線BC′到平面D′AC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•青浦區(qū)二模)(理)在長方體ABCD-A'B'C'D'中,AB=2,AD=1,AA'=1.
求:
(1)頂點D'到平面B'AC的距離;
(2)二面角B-AC-B'的大小.(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知在長方體ABCD-A′B′C′D′中,點E為棱CC′上任意一點,AB=BC=2,CC′=1.
(Ⅰ)求證:平面ACC′A′⊥平面BDE;
(Ⅱ)若點P為棱C′D′的中點,點E為棱CC′的中點,求二面角P-BD-E的余弦值.

查看答案和解析>>

同步練習(xí)冊答案