(本小題滿分12分)
如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=600,AC=7,AD=6,S△ADC=,
求AB的長.
8

試題分析:在△ADC中,已知AC=7,AD=6,S△ADC=,則由S△ADC=•AC•AD•sin∠DAC,
∴sin∠DAC=,又AC為∠DAB的平分線,∠1+∠2<180°得∠BAC=∠DAC為銳角,∴cos∠2 =,∴∠ACB=120°-∠2,∴sin∠ACB=sin(120°-∠2)= sin120°cos∠2- cos120°sin∠2)=,又AC=7,∴由正弦定理得:AB=
點評:解三角形的內(nèi)容不僅能考查正、余弦定理的應用,而且能很好地考查三角變換的技巧,它還可與立體幾何、解析幾何、向量、數(shù)列、概率等知識相結(jié)合,這其中經(jīng)常涉及到數(shù)形結(jié)合、分類討論及等價轉(zhuǎn)化等思想方法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2 DE=2,M為AD中點.

(Ⅰ) 證明;
(Ⅱ) 若二面角A-BF-D的平面角的余弦值為,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,已知六棱錐PABCDEF的底面是正六邊形,平面ABC,,給出下列結(jié)論:①;②平面平面PBC;③直線平面PAE;④;⑤直線PD與平面PAB所成角的余弦值為。
其中正確的有                (把所有正確的序號都填上)。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在多面體中,平面∥平面, ⊥平面,,,
 ,

(Ⅰ)求證:平面;
(Ⅱ)求證:∥平面;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,四棱錐S—ABCD的底面為正方形,SD底面ABCD,則下列結(jié)論中正確的是                (把正確的答案都填上)

(1)AC⊥SB
(2)AB∥平面SCD
(3)SA與平面SBD所成的角等于SC與平面SBD所成的角
(4)AB與SC所成的角等于DC與SA所成的角

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、是不同的直線,、、是不同的平面,有以下四命題:   
① 若,則;          ②若,則;
③ 若,則;         ④若,則.
其中真命題的序號是                     (   )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正方體ABCD-A1B1C1D1中,BB1與平面ACD1所成的角的余弦值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知兩個不同的平面,能判定//的條件是(    )
A.、分別平行于直線B.、分別垂直于直線
C.、分別垂直于平面D.內(nèi)有兩條直線分別平行于

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖所示,在正四棱錐S-ABCD中,的中點,P點在側(cè)面△SCD內(nèi)及其邊界上運動,并且總是保持.則動點的軌跡與△組成的相關(guān)圖形最有可有是圖中的(  )

查看答案和解析>>

同步練習冊答案