【題目】某學(xué)校為了了解高中生的藝術(shù)素養(yǎng),從學(xué)校隨機(jī)選取男,女同學(xué)各50人進(jìn)行研究,對(duì)這100名學(xué)生在音樂、美術(shù)、戲劇、舞蹈等多個(gè)藝術(shù)項(xiàng)目進(jìn)行多方位的素質(zhì)測(cè)評(píng),并把調(diào)查結(jié)果轉(zhuǎn)化為個(gè)人的素養(yǎng)指標(biāo)和,制成下圖,其中“*”表示男同學(xué),“+”表示女同學(xué).
若,則認(rèn)定該同學(xué)為“初級(jí)水平”,若,則認(rèn)定該同學(xué)為“中級(jí)水平”,若,則認(rèn)定該同學(xué)為“高級(jí)水平”;若,則認(rèn)定該同學(xué)為“具備一定藝術(shù)發(fā)展?jié)撡|(zhì)”,否則為“不具備明顯藝術(shù)發(fā)展?jié)撡|(zhì)”.
(I)從50名女同學(xué)的中隨機(jī)選出一名,求該同學(xué)為“初級(jí)水平”的概率;
(Ⅱ)從男同學(xué)所有“不具備明顯藝術(shù)發(fā)展?jié)撡|(zhì)的中級(jí)或高級(jí)水平”中任選2名,求選出的2名均為“高級(jí)水平”的概率;
(Ⅲ)試比較這100名同學(xué)中,男、女生指標(biāo)的方差的大。ㄖ恍鑼懗鼋Y(jié)論).
【答案】(I) .(Ⅱ).(Ⅲ)這100名同學(xué)中男同學(xué)指標(biāo)的方差大于女同學(xué)指標(biāo)的方差.
【解析】
(I)由圖知,在50名參加測(cè)試的女同學(xué)中,指標(biāo)x<0.6的有15人,由此能求出該同學(xué)為“初級(jí)水平”的概率;
(Ⅱ)利用古典概型概率公式即可得到結(jié)果;
(Ⅲ)由圖可知,這100名同學(xué)中男同學(xué)指標(biāo)的方差大于女同學(xué)指標(biāo)的方差.
(I)由圖知,在50名參加測(cè)試的女同學(xué)中,指標(biāo)的有15人,
所以,從50名女同學(xué)中隨機(jī)選出一名,該名同學(xué)為“初級(jí)水平”的概率為.
(Ⅱ)男同學(xué)“不具備明顯藝術(shù)發(fā)展?jié)撡|(zhì)的中級(jí)或高級(jí)水平”共有6人,其中“中級(jí)水平”有3人,分別記為,,.“高級(jí)水平”有3人,分別記為,,,所有可能的結(jié)果組成的基本事件有:
,,,,,,,,,,,,,,,共15個(gè),其中兩人均為“高級(jí)水平”的共有3個(gè),所以,所選2人均為“高級(jí)水平”的概率.
(Ⅲ)由圖可知,這100名同學(xué)中男同學(xué)指標(biāo)的方差大于女同學(xué)指標(biāo)的方差.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為與,且乙投球3次均未命中的概率為,甲投球未命中的概率恰是乙投球未命中的概率的2倍.
(Ⅰ)求乙投球的命中率;
(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“a<﹣2”是“函數(shù)f(x)=ax+3在區(qū)間[﹣1,2]上存在零點(diǎn)x0”的( )
A.充分非必要條件
B.必要非充分條件
C.充分必要條件
D.既非充分也非必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(0,﹣1)是拋物線C:x2=2py(p>0)準(zhǔn)線上的一點(diǎn),點(diǎn)F是拋物線C的焦點(diǎn),點(diǎn)P在拋物線C上且滿足|PF|=m|PA|,當(dāng)m取最小值時(shí),點(diǎn)P恰好在以原點(diǎn)為中心,F(xiàn)為焦點(diǎn)的雙曲線上,則此雙曲線的離心率為( )
A.
B.
C. +1
D. +1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】七巧板是古代中國(guó)勞動(dòng)人民發(fā)明的一種中國(guó)傳統(tǒng)智力玩具,它由五塊等腰直角三角形,一塊正方形和一塊平行四邊形共七塊板組成.清陸以湉《冷廬雜識(shí)》卷一中寫道:近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余.體物肖形,隨手變幻,蓋游戲之具,足以排悶破寂,故世俗皆喜為之.如圖是一個(gè)用七巧板拼成的正方形,若在此正方形中任取一點(diǎn),則此點(diǎn)取自陰影部分的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過(guò)P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線E: ﹣ =1(a>0,b>0),點(diǎn)F為E的左焦點(diǎn),點(diǎn)P為E上位于第一象限內(nèi)的點(diǎn),P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為Q,且滿足|PF|=3|FQ|,若|OP|=b,則E的離心率為( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(﹣1,0),B(1,0), = + ,| |+| |=4
(1)求P的軌跡E
(2)過(guò)軌跡E上任意一點(diǎn)P作圓O:x2+y2=3的切線l1 , l2 , 設(shè)直線OP,l1 , l2的斜率分別是k0 , k1 , k2 , 試問在三個(gè)斜率都存在且不為0的條件下, ( + )是否是定值,請(qǐng)說(shuō)明理由,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex(sinx﹣ax2+2a﹣e),其中a∈R,e=2.71818…為自然數(shù)的底數(shù).
(1)當(dāng)a=0時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng) ≤a≤1時(shí),求證:對(duì)任意的x∈[0,+∞),f(x)<0.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com