A. | f(x)在$(0,\frac{π}{2})$單調(diào)遞減 | B. | f(x)在$(\frac{π}{4},\frac{3π}{4})$單調(diào)遞減 | ||
C. | f(x)在$(0,\frac{π}{2})$單調(diào)遞增 | D. | f(x)在$(\frac{π}{4},\frac{3π}{4})$單調(diào)遞增 |
分析 利用兩角差的正弦公式化簡(jiǎn)函數(shù)的解析式,根據(jù)正弦函數(shù)的周期性、奇偶性求得ω和φ,再利用正弦函數(shù)的單調(diào)性得出結(jié)論.
解答 解:∵函數(shù)$f(x)=sin(ωx+φ)-\sqrt{3}cos(ωx+φ)$=2sin(ωx+φ-$\frac{π}{3}$) ($ω>0,|φ|<\frac{π}{2}$)的最小正周期為π,
∴$\frac{2π}{ω}$=π,∴ω=2.
∵f(x)為奇函數(shù),∴φ-$\frac{π}{3}$=0,∴φ=$\frac{π}{3}$,∴f(x)=2sin2x.
在$(0,\frac{π}{2})$上,2x∈(0,π),f(x)=2sin2x 不具有單調(diào)性,故排除A、C.
在$(\frac{π}{4},\frac{3π}{4})$上,2x∈($\frac{π}{2}$,$\frac{3π}{2}$),f(x)=2sin2x 單調(diào)遞減,故排除D,
故選:B.
點(diǎn)評(píng) 本題主要考查兩角差的正弦公式,正弦函數(shù)的周期性、奇偶性、單調(diào)性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,-1] | B. | [-1,1] | C. | [1,3] | D. | [3,+∞] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1” | |
B. | “x=-1”是“x2-5x-6=0”的必要不充分條件 | |
C. | 命題“$?{x_0}∈R,x_0^2+{x_0}+1<0$”的否定是“?x∈R,x2+x+1<0” | |
D. | 命題“若x=y,則sinx=siny”的逆否命題為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 4 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com