【題目】下列命題中,m,n表示兩條不同的直線,、、表示三個不同的平面.正確的命題是(

,則,,則;

,,則;,,則

A.B.C.D.

【答案】C

【解析】

運用線面平行、垂直的性質(zhì)定理即可判斷;

運用面面垂直的判定和性質(zhì)定理,即可判斷;

運用線面平行的性質(zhì)定理,即可判斷m,n的位置關(guān)系;

運用面面平行的傳遞性和線面垂直的性質(zhì)定理,即可判斷

解:由于nα,由線面平行的性質(zhì)定理得,n平行于過n的平面與α的交線l,又mα,故ml,即mn,故正確;

αγ,βγ,則αβ可能相交,也可能平行,錯;

mα,nα,由線面平行的性質(zhì)定理,即得m,n平行、相交或異面,故錯;

αβ,βγ,mα,則面面平行的傳遞性得αγ,由線面垂直的性質(zhì)定理得,mγ,故正確.

故選:C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) .若曲線在點處的切線方程為為自然對數(shù)的底數(shù)).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域為,若存在常數(shù),使對一切實數(shù)均成立,則稱為“倍約束函數(shù)”現(xiàn)給出下列函數(shù):;;是定義在實數(shù)集上的奇函數(shù),且對一切均有其中是“倍約束函數(shù)”的序號是  

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,圓的參數(shù)方程為為參數(shù)),直線經(jīng)過點,且傾斜角為

(1)寫出直線的參數(shù)方程和圓的標準方程;

(2)設(shè)直線與圓相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,我國電子商務(wù)蓬勃發(fā)展,有關(guān)部門推出了針對網(wǎng)購平臺的商品和服務(wù)的評價系統(tǒng),從該系統(tǒng)中隨機選出100次成功了的交易,并對這些交易的評價進行統(tǒng)計,網(wǎng)購者對商品的滿意率為0.6,對服務(wù)的滿意率為0.75,其中對商品和服務(wù)都滿意的交易為40次.

(1)根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有的把握認為“網(wǎng)購者對服務(wù)滿意與對商品滿意之間有關(guān)”?

(2)若將頻率視為概率,某人在該網(wǎng)購平臺上進行的3次購物中,設(shè)對商品和服務(wù)都滿意的次數(shù)為,求的分布列和數(shù)學(xué)期望.

附: (其中為樣本容量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方形的四個頂點都在橢圓上,若橢圓的焦點在正方形的內(nèi)部,則橢圓的離心率的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店統(tǒng)計了連續(xù)三天售出商品的種類情況:第一天售出19種商品,第二天售出13種商品,第三天售出18種商品;前兩天都售出的商品有3種,后兩天都售出的商品有4種,則該網(wǎng)店

第一天售出但第二天未售出的商品有______種;

這三天售出的商品最少有_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,若ADBC,則AB2BD·BC;類似地有命題:在三棱錐ABCD中,AD⊥平面ABC,若A點在平面BCD內(nèi)的射影為M,則有SSBCM·SBCD.上述命題是 (  )

A. 真命題

B. 增加條件“ABAC”才是真命題

C. 增加條件“M為△BCD的垂心”才是真命題

D. 增加條件“三棱錐ABCD是正三棱錐”才是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,pq

已知pq成立的必要不充分條件,求實數(shù)m的取值范圍;

成立的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案