與雙曲線
x2
9
-
y2
7
=-1有相同焦點(diǎn),且離心率為0.8的橢圓方程為
 
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)橢圓方程為
x2
b2
+
y2
a2
=1,a>b>0,由已知得
c=4
c
a
=
4
5
a2=b2+c2
,由此能求出橢圓方程.
解答: 解:∵橢圓與雙曲線
x2
9
-
y2
7
=-1有相同焦點(diǎn)(0,±4),且離心率為0.8,
∴設(shè)橢圓方程為
x2
b2
+
y2
a2
=1,a>b>0,
c=4
c
a
=
4
5
a2=b2+c2
,解得a=5,b=3,
x2
9
+
y2
25
=1

故答案為:
x2
9
+
y2
25
=1
點(diǎn)評(píng):本題考查橢圓方程的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意橢圓性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin2x+acosx+2的最大值為g(a).
(1)求g(a)的表達(dá)式;
(2)解不等式g(2sinx+4)≤5;
(3)若函數(shù)F(x)=g(x)-kx-3在[0,+∞]上有兩個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
9
=1的左支上一點(diǎn)P,該雙曲線的一條漸近線方程3x+4y=0,F(xiàn)1,F(xiàn)2分別雙曲線的左右焦點(diǎn),若|PF1|=10,則|PF2|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
1
2
ax2-bx,若x=1是函數(shù)f(x)的極大值點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=2sin(2x+
π
3
)圖象沿x軸向左平移m個(gè)單位(m>0),所得函數(shù)的圖象關(guān)于y軸對(duì)稱,則m的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長(zhǎng)為10cm的線段AB上任取一點(diǎn)C,以線段AC,CB為兩條直角邊作直角三角形,則該直角三角形面積大于8cm2的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是以1為首項(xiàng),2為公差的等差數(shù)列,數(shù)列{bn}是以1為首項(xiàng),2為公比的等比數(shù)列,則a1 b1+a2b2+…+a10b10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)數(shù)列{an}是等差數(shù)列,平面向量
OA
OB
,
OC
的終點(diǎn)在同一直線上,且
OA
=a1
OB
+a20
OC
,則
1
a10
+
2
a11
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知隨機(jī)變量X~N(3,σ2),且P(X≥4)=0.28,則P(X≥2)=( 。
A、0.28B、0.44
C、0.56D、0.72

查看答案和解析>>

同步練習(xí)冊(cè)答案