若方程
x2
k-2
+
y2
5-k
=1表示雙曲線,則實(shí)數(shù)k的取值范圍是
 
考點(diǎn):雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:依題意,(k-5)(k-2)<0,從而可得答案.
解答: 解:∵方程
x2
k-2
+
y2
5-k
=1表示雙曲線,
∴(5-k)(k-2)<0,
∴(k-5)(k-2)>0,
∴k>5或k<2.
即k的取值范圍為(-∞,2)∪(5,+∞).
故答案為:(-∞,2)∪(5,+∞).
點(diǎn)評:本題考查雙曲線的簡單性質(zhì),得到(5-k)(k-2)<0是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù),f(x)=x2+lnx-ax.
(Ⅰ)當(dāng)a=3時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)在(0,1)上有極值,求a的取值范圍;
(Ⅲ)在(Ⅱ)的結(jié)論下,設(shè)g(x)=1+x|x-a|(1≤x≤3),求函數(shù)g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log
1
2
(x2-ax+2)
(1)a=3,求函數(shù)的定義域和值域.
(2)求實(shí)數(shù)a的取值范圍,使得f(x)在(3,+∞)上是單調(diào)減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:x(x-1)<x(2x-3)+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C、D的點(diǎn).
(Ⅰ)求證:CD⊥面ADE;
(Ⅱ)求證:平面ABCD⊥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,若a1=1,an+1=2an-3(n≥1),則該數(shù)列的通項(xiàng)an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

重慶一中高三有理科生高中生1200人,文科生400人,現(xiàn)用分層抽樣的方法從所有師生中抽取一個容量為N的樣本;已知從文科生中抽取人數(shù)為50人,那么N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,若輸入一個小于10的正整數(shù)n,則該程序運(yùn)行后輸出n的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

棱長為2的正方體被一平面截成兩個幾何體,其中一個幾何體的三視圖如圖所示,那么該幾何體的體積是
 

查看答案和解析>>

同步練習(xí)冊答案