【題目】下列函數(shù)中,滿足f(x2)=[f(x)]2的是( )
A.f(x)=lnx
B.f(x)=|x+1|
C.f(x)=x3
D.f(x)=ex
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某輛汽車以x km/h的速度在高速公路上勻速行駛(考慮到高速公路行車安全要求60≤x≤120)時(shí),每小時(shí)的油耗(所需要的汽油量)為,其中k為常數(shù),若汽車以120km/h的速度行駛時(shí),每小時(shí)的油耗為11.5L.
(1)求k的值;
(2)求該汽車每小時(shí)油耗的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是空間兩條直線, 是空間兩個(gè)平面,則下列命題中不正確的是( )
A. 當(dāng)時(shí),“”是“”的充要條件
B. 當(dāng)時(shí),“”是“”的充分不必要條件
C. 當(dāng)時(shí),“”是“”的必要不充分條件
D. 當(dāng)時(shí),“”是“”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù) ,我們把使 的實(shí)數(shù) 叫做函數(shù) 的零點(diǎn),且有如下零
點(diǎn)存在定理:如果函數(shù) 在區(qū)間 上的圖像是連續(xù)不斷的一條曲線,并且有 ,那么,函數(shù) 在區(qū)間 內(nèi)有零點(diǎn).給出下列命題:
①若函數(shù) 在 上是單調(diào)函數(shù),則 在 上有且僅有一個(gè)零點(diǎn);
②函數(shù) 有 個(gè)零點(diǎn);
③函數(shù) 和 的圖像的交點(diǎn)有且只有一個(gè);
④設(shè)函數(shù) 對 都滿足 ,且函數(shù) 恰有 個(gè)不同的零點(diǎn),則這6個(gè)零點(diǎn)的和為18;
其中所有正確命題的序號為________.(把所有正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=loga(3﹣ax)(a>0,a≠1)
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的定義域;
(2)是否存在實(shí)數(shù)a,使函數(shù)f(x)在[1,2]遞減,并且最大值為1,若存在,求出a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線 在 和 處的切線互相平行,求 的值;
(2)求 的單調(diào)區(qū)間;
(3)設(shè) ,若對任意 ,均存在 ,使得 ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖平行四邊形ABCD中,∠DAB=60°,AB=2,AD=2,M為CD邊的中點(diǎn),沿BM將△CBM折起使得平面BMC⊥平面ABMD.
(1)求四棱錐C﹣ADMB的體積;
(2)求折后直線AB與平面AMC所成的角的正弦.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題: 1)y=|cos(2x+ )|最小正周期為π;
2)函數(shù)y=tan 的圖象的對稱中心是(kπ,0),k∈Z;
3)f(x)=tanx﹣sinx在(﹣ , )上有3個(gè)零點(diǎn);
4)若 ∥ , ,則
其中錯(cuò)誤的是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|.
(1)若a=2,解不等式f(x)≥2;
(2)已知f(x)是偶函數(shù),求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com