△ABC中,已知a2+b2+
3
ab=c2,則∠C=
 
考點(diǎn):余弦定理
專(zhuān)題:計(jì)算題,解三角形
分析:利用余弦定理及a2+b2+
3
ab=c2可求答案.
解答: 解:由a2+b2+
3
ab=c2,得a2+b2-c2=-
3
ab,
兩邊同除以2ab,得
a2+b2-c2
2ab
=-
3
2

則cosC=-
3
2
,
又0°<C<180°,
∴C=150°,
故答案為:150°.
點(diǎn)評(píng):該題考查余弦定理及其應(yīng)用,熟練掌握定理的內(nèi)容是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某醫(yī)院從甲、乙等6名醫(yī)生中選出4名并按一定次序派出(每次派出一名)支援社區(qū)門(mén)診,那么“甲、乙都被選中且甲在乙之前被派出(不一定相鄰)”的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

古希臘人常用小石子在沙灘上擺成各種形狀研究數(shù),如他們研究過(guò)圖1中的1,3,6,10,…,由于這些數(shù)能表示成三角形,將其稱(chēng)為三角形數(shù);類(lèi)似地,稱(chēng)圖2中的1,4,9,16…這樣的數(shù)為正方形數(shù),則除1外,最小的既是三角形數(shù)又是正方形數(shù)的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對(duì)任意m,n∈N*都有①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1).則f(2013,2014)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
16
+
y2
12
=1,則以點(diǎn)M(-1,2)為中點(diǎn)的弦所在直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示x的整數(shù)部分,即[x]是不超過(guò)x的最大整數(shù).那么[log21]+[log22]+[1og23]+[1og24]+…[log230]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)由下表定義:
x 2 5 3 1 4
f(x) 1 2 3 4 5
若a0=5,an+1=f(an),n=0,1,2,…,則a2013=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cos(210°-α)=
12
13
,則cos(150°+α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z滿(mǎn)足(1+2i)z=4+3i,則z的共軛復(fù)數(shù)
.
z
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案