【題目】“ALS冰桶挑戰(zhàn)賽”是一項社交網絡上發(fā)起的籌款活動,活動規(guī)定:被邀請者要么在24小時內接受挑戰(zhàn),要么選擇為慈善機構捐款(不接受挑戰(zhàn)),并且不能重復參加該活動.若被邀請者接受挑戰(zhàn),則他需在網絡上發(fā)布自己被冰水澆遍全身的視頻內容,然后便可以邀請另外3個人參與這項活動.假設每個人接受挑戰(zhàn)與不接受挑戰(zhàn)是等可能的,且互不影響.
(1)若某參與者接受挑戰(zhàn)后,對其他3個人發(fā)出邀請,則這3個人中至少有2個人接受挑戰(zhàn)的概率是多少?
(2)為了解冰桶挑戰(zhàn)賽與受邀請的性別是否有關,某調查機構進行了隨機抽樣調查,調查得到如下列聯表:
接受挑戰(zhàn) | 不接受挑戰(zhàn) | 合計 | |
男性 | 45 | 15 | 60 |
女性 | 25 | 15 | 40 |
合計 | 70 | 30 | 100 |
根據表中數據,能否在犯錯誤的概率不超過0.1的前提下認為“冰桶挑戰(zhàn)賽與受邀請者的性別有關”?
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
【答案】(1);(2)在犯錯誤的概率不超過的前提下不能認為“冰桶挑戰(zhàn)賽與受邀者的性別有關”.
【解析】試題分析:(1)列舉出人是否參加挑戰(zhàn)的所有情況,共種,其中至少由兩人接受挑戰(zhàn)的情況共有種,由古典概型概率公式可得結果;(2)直接利用公式算出的觀測值,再對比表格中數據即可.
試題解析:(1)這3個人接受挑戰(zhàn)分別記為A,B,C,則,,分別表示這3個人不接受挑戰(zhàn).這3個人參與該項活動的可能活動為:,共有8種.其中,至少有2個人接受挑戰(zhàn)的可能結果有:,共有4種.
根據古典概型的概率公式,所求的概率為.
(2)假設冰桶挑戰(zhàn)賽與受邀者的性別無關.
根據列聯表,得到的觀測值為:
,
因為1.79<2.706,所以在犯錯誤的概率不超過0.1的前提下不能認為“冰桶挑戰(zhàn)賽與受邀者的性別有關”.
科目:高中數學 來源: 題型:
【題目】設f(x)是定義在R上且周期為1的函數,在區(qū)間[0,1)上,f(x)= ,其中集合D={x|x= ,n∈N*},則方程f(x)﹣lgx=0的解的個數是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)為二次函數,且f(x-1)+f(x)=2x2+4.
(1)求f(x)的解析式;
(2)當x∈[t,t+2],t∈R時,求函數f(x)的最小值(用t表示).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知平面直角坐標系xOy中,過點P(﹣1,﹣2)的直線l的參數方程為 (t為參數),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsinθtanθ=2a(a>0),直線l與曲線C相交于不同的兩點M、N.
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)若|PM|=|MN|,求實數a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知線段上有個確定的點(包括端點與).現對這些點進行往返標數(從…進行標數,遇到同方向點不夠數時就“調頭”往回數).如圖:在點上標,稱為點,然后從點開始數到第二個數,標上,稱為點,再從點開始數到第三個數,標上,稱為點(標上數的點稱為點),……,這樣一直繼續(xù)下去,直到,,,…,都被標記到點上,則點上的所有標記的數中,最小的是_______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數 f(x)=|x+2|﹣|x﹣3|﹣a
(Ⅰ)當 a=1 時,求函數 f(x)的最大值;
(Ⅱ)若 f(x)≤ 對任意 x∈R 恒成立,求實數 a 的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】李克強總理在2018年政府工作報告指出,要加快建設創(chuàng)新型國家,把握世界新一輪科技革命和產業(yè)變革大勢,深入實施創(chuàng)新驅動發(fā)展戰(zhàn)略,不斷增強經濟創(chuàng)新力和競爭力.某手機生產企業(yè)積極響應政府號召,大力研發(fā)新產品,爭創(chuàng)世界名牌.為了對研發(fā)的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到一組銷售數據,如表所示:
單價(千元) | ||||||
銷量(百件) |
已知.
(1)若變量具有線性相關關系,求產品銷量(百件)關于試銷單價(千元)的線性回歸方程;
(2)用(1)中所求的線性回歸方程得到與對應的產品銷量的估計值.
(參考公式:線性回歸方程中的估計值分別為)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】正方體ABCD﹣A1B1C1D1的棱長為1,點E,F分別是棱D1C1 , B1C1的中點,過E,F作一平面α,使得平面α∥平面AB1D1 , 則平面α截正方體的表面所得平面圖形為( )
A.三角形
B.四邊形
C.五邊形
D.六邊形
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com