(本小題滿分12分)
如圖:在三棱錐D-ABC中,已知是正三角形,AB平面BCD,,E為BC的中點,F(xiàn)在棱AC上,且
(1)求三棱錐D-ABC的表面積;
(2)求證AC⊥平面DEF;
(3)若M為BD的中點,問AC上是否存在一點N,使MN∥平面DEF?若存在,說明點N的位置;若不存在,試說明理由.
(1)(2)先證EF⊥AC,再證DE⊥AC,即可證AC⊥平面DEF
(3)存在這樣的點N,當(dāng)CN=時,MN∥平面DEF.
解析試題分析:(1)∵AB⊥平面BCD,∴AB⊥BC,AB⊥BD.
∵△BCD是正三角形,且AB=BC=a,∴AD=AC=.
設(shè)G為CD的中點,則CG=,AG=.
∴,,.
三棱錐D-ABC的表面積為.
(2)取AC的中點H,∵AB=BC,∴BH⊥AC.
∵AF=3FC,∴F為CH的中點.
∵E為BC的中點,∴EF∥BH.則EF⊥AC.
∵△BCD是正三角形,∴DE⊥BC.
∵AB⊥平面BCD,∴AB⊥DE.
∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.
∵DE∩EF=E,∴AC⊥平面DEF.
(3)存在這樣的點N,當(dāng)CN=時,MN∥平面DEF.
連CM,設(shè)CM∩DE=O,連OF.由條件知,O為△BCD的重心,CO=CM.
∴當(dāng)CF=CN時,MN∥OF.∴CN=
考點:棱錐的結(jié)構(gòu)特征.
點評:題考查棱錐的結(jié)構(gòu)特征,證明線面垂直,線面平行,考查邏輯思維能力,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四邊形ABCD為平行四邊形,BC⊥平面ABE,AE⊥BE,BE = BC = 1,AE = ,M為線段AB的中點,N為線段DE的中點,P為線段AE的中點。
(1)求證:MN⊥EA;
(2)求四棱錐M – ADNP的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知一四棱錐P-ABCD的三視圖如下,E是側(cè)棱PC上的動點。
(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)當(dāng)點E在何位置時,BD⊥AE?證明你的結(jié)論;
(Ⅲ)若點E為PC的中點,求二面角D-AE-B的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)在如圖的多面體中,⊥平面,,,,,,,是的中點.
(Ⅰ) 求證:平面;
(Ⅱ) 求證:;
(Ⅲ) 求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=2,OB=3,OC=4,E是OC的中點.
(1)求異面直線BE與AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,已知⊙所在的平面,AB是⊙的直徑,,是⊙上一點,且,分別為中點。
(1)求證:平面;
(2)求證:;
(3)求三棱錐-的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖:直三棱柱ABC—中,, ,D為AB中點。
(1)求證:;
(2)求證:∥平面;
(3)求C1到平面A1CD的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.
(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com