【題目】在斜三棱柱ABC﹣A1B1C1中BC⊥CC1 , AC=BC=2,A1在底面ABC上的射影恰為AC的中點D.
(1)證明:BC⊥平面ACC1A1
(2)若二面角A﹣A1B﹣C的余弦值.

【答案】
(1)證明:由已知得,A1D⊥平面ABC,又BC平面ABC,∴A1D⊥BC,

∵BC⊥CC1,CC1∥AA1,∴BC⊥AA1,又A1D∩AA1=A1,

∴BC⊥平面ACC1A1


(2)解:由(1)及AC平面ACC1A1,得BC⊥AC,

以C為原點,CA、CB所在直線分別為x、y軸,過C與平面ABC垂直的直線為z軸建立如圖所示空間直角坐標(biāo)系C﹣xyz,

設(shè)A1D=a,則A(2,0,0),A1(1,0,a),B(0,2,0),C1(﹣1,0,a),

,

又由已知得 ,∴3﹣a2=0,得a= ,

,

設(shè)平面AA1B的法向量 ,

,∴ ,令z= ,則x=y=3.

平面A1BC的法向量 ,

∴cos< >=

∴二面角A﹣A1B﹣C的余弦值為﹣


【解析】(1)由已知可得A1D⊥平面ABC,進(jìn)一步得A1D⊥BC,再由BC⊥CC1 , 得BC⊥AA1 , 然后利用線面垂直的判定得答案;(2)利用線面垂直的性質(zhì)可得BC⊥AC,以C為原點,CA、CB所在直線分別為x、y軸,過C與平面ABC垂直的直線為z軸建立如圖所示空間直角坐標(biāo)系C﹣xyz,設(shè)A1D=a,得A,A1 , B,C1 的坐標(biāo),然后求出平面AA1B與平面A1BC的一個法向量,再求出兩個法向量所成角的余弦值,進(jìn)一步得到二面角A﹣A1B﹣C的余弦值.
【考點精析】根據(jù)題目的已知條件,利用直線與平面垂直的判定的相關(guān)知識可以得到問題的答案,需要掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),f(2)=0, <0(x>0),則不等式xf(x)<0的解集

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:實數(shù)x滿足x2﹣4ax+3a2<0,其中a>0;命題q:實數(shù)x滿足x2﹣5x+6≤0
(1)若a=1,且q∧p為真,求實數(shù)x的取值范圍;
(2)若p是q必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列{an}中,a1=1,又a1 , a2 , a5成公比不為1的等比數(shù)列. (Ⅰ)求數(shù)列{an}的公差;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式組 表示的平面區(qū)域為D,則
(1)z=x2+y2的最小值為
(2)若函數(shù)y=|2x﹣1|+m的圖象上存在區(qū)域D上的點,則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(4,﹣3),B(2,﹣1)和直線l:4x+3y﹣2=0.
(1)求在直角坐標(biāo)平面內(nèi)滿足|PA|=|PB|的點P的方程;
(2)求在直角坐標(biāo)平面內(nèi)一點P滿足|PA|=|PB|且點P到直線l的距離為2的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1是某高三學(xué)生進(jìn)入高中三年來的數(shù)學(xué)考試成績的莖葉圖,第1次到第第14次的考試成績依次記為A1 , A2 , …A14 , 如圖2是統(tǒng)計莖葉圖中成績在一定范圍內(nèi)考試次數(shù)的一個算法流程圖,那么算法流程圖輸出的結(jié)果是(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程 =1表示焦點在x軸上的雙曲線. (Ⅰ)命題q為真命題,求實數(shù)k的取值范圍;
(Ⅱ)若命題“p∨q”為真,命題“p∧q”為假,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某營養(yǎng)學(xué)家建議:高中生每天的蛋白質(zhì)攝入量控制在[60,90](單位:克),脂肪的攝入量控制在[18,27](單位:克).某學(xué)校食堂提供的伙食以食物A和食物B為主,1千克食物A含蛋白質(zhì)60克,含脂肪9克,售價20元;1千克食物B含蛋白質(zhì)30克,含脂肪27克,售價15元. (Ⅰ)如果某學(xué)生只吃食物A,判斷他的伙食是否符合營養(yǎng)學(xué)家的建議,并說明理由;
(Ⅱ)為了花費最低且符合營養(yǎng)學(xué)家的建議,學(xué)生需要每天同時食用食物A和食物B各多少千克?并求出最低需要花費的錢數(shù).

查看答案和解析>>

同步練習(xí)冊答案