【題目】已知函數(shù)f(x)=lnx,g(x)= (x為實常數(shù)).
(1)當(dāng)a=1時,求函數(shù)φ(x)=f(x)﹣g(x)在x∈[4,+∞)上的最小值;
(2)若方程e2fx=g(x)(其中e=2.71828…)在區(qū)間[ ]上有解,求實數(shù)a的取值范圍.

【答案】
(1)解:當(dāng)a=1時,函數(shù)φ(x)=f(x)﹣g(x)=lnx﹣ + ,

∴φ′(x)= = ;

x∈[4,+∞),∴φ′(x)>0

∴函數(shù)φ(x)=f(x)﹣g(x)在x∈[4,+∞)上單調(diào)遞增

∴x=4時,φ(x)min=2ln2﹣


(2)解:方程e2fx=g(x)可化為x2= ,∴a= ﹣x3

設(shè)y= ﹣x3,則y′= ﹣3x2,

∵x∈[ ]

∴函數(shù)在[ ]上單調(diào)遞增,在[ ,1]上單調(diào)遞減

∵x= 時,y= ;x= 時,y= ;x=1時,y= ,

∴y∈[ ]

∴a∈[ ]


【解析】(1)求導(dǎo)數(shù),求得函數(shù)的單調(diào)性,即可求函數(shù)φ(x)=f(x)﹣g(x)在x∈[4,+∞)上的最小值;(2)化簡方程,分離參數(shù),再構(gòu)建新函數(shù),確定函數(shù)的單調(diào)性,求出函數(shù)的值域,即可求實數(shù)a的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若 、 是兩個相交平面,則在下列命題中,真命題的序號為( )
①若直線 ,則在平面 內(nèi)一定不存在與直線 平行的直線.
②若直線 ,則在平面 內(nèi)一定存在無數(shù)條直線與直線 垂直.
③若直線 ,則在平面 內(nèi)不一定存在與直線 垂直的直線.
④若直線 ,則在平面 內(nèi)一定存在與直線 垂直的直線.
A.①③
B.②③
C.②④
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 有最大值 , ,且 的導(dǎo)數(shù).
(Ⅰ)求 的值;
(Ⅱ)證明:當(dāng) 時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為 ,離心率為 ,經(jīng)過點 且傾斜角為 的直線 交橢圓于 兩點.

(1)若 的周長為16,求直線 的方程;
(2)若 ,求橢圓 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義域為(0,+∞)的單調(diào)函數(shù),若對任意的x∈(0,+∞),都有 ,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在區(qū)間(0,3]上有兩解,則實數(shù)a的取值范圍是(
A.0<a≤5
B.a<5
C.0<a<5
D.a≥5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x|+|x+1|.
(1)解關(guān)于x的不等式f(x)>3;
(2)若x∈R,使得m2+3m+2f(x)≥0成立,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形 中, 分別為 的中點,現(xiàn)將 沿 折起,得四棱錐

(1)求證: 平面 ;
(2)若平面 平面 ,求四面體 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=3ax2+bx-5a+b是偶函數(shù),且其定義域為[6a-1,a],則a+b=( )
A.
B.-1
C.1
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)y=f(x)的導(dǎo)函數(shù)的圖象如圖所示,給出下列判斷:

①函數(shù)y=f(x)在區(qū)間 內(nèi)單調(diào)遞增;
②函數(shù)y=f(x)在區(qū)間 內(nèi)單調(diào)遞減;
③函數(shù)y=f(x)在區(qū)間(4,5)內(nèi)單調(diào)遞增;
④當(dāng)x=2時,函數(shù)y=f(x)有極小值;
⑤當(dāng)x= 時,函數(shù)y=f(x)有極大值.
則上述判斷中正確的是( )
A.①②
B.②③
C.③④⑤
D.③

查看答案和解析>>

同步練習(xí)冊答案