已知ABCD-A′B′C′D′是平行六面體.
(1)化簡(jiǎn)++,并在圖形中標(biāo)出其結(jié)果;
(2)設(shè)M是底面ABCD的中心,N是側(cè)面BCC′B′的對(duì)角線BC′上的點(diǎn),且BN∶NC′=3∶1,設(shè)=α+β+γ,試求α,β,γ之值.
(1)先在圖形中標(biāo)出,為此,可取的中點(diǎn)E,則=.
∵=,在D′C′上取點(diǎn)F,使D′F

=D′C′.
∴==.又=,從而有
++=++=,如右圖所示.
(2) =+=+
=+
=+
=++,
∴α=,β=,γ=.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

棱柱的側(cè)棱
A.相交于一點(diǎn)B.平行但不相等
C.平行且相等D.可能平行也可能相交于一點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)右圖為一簡(jiǎn)單組合體,其底面ABCD為正方形,PD⊥平面ABCD,EC//PD,且PD=AD=2CE=2 .
(1)若N為線段PB的中點(diǎn),求證:EN⊥平面PDB;
(2)求該幾何體的體積;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)(注意:在試題卷上作答無效)

在四棱錐中,側(cè)面底面,底面是直角梯形,,,.
(Ⅰ)求證:平面
(Ⅱ)設(shè)為側(cè)棱上一點(diǎn),,
試確定的值,使得二面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正方體ABCD-A1B1C1D1中,O是底面ABCD的中心,M、N分別是棱DD1、D1C1的中點(diǎn),則直線OM
(  )
A.和AC、MN都垂直
B.垂直于AC,但不垂直于MN
C.垂直于MN,但不垂直于AC
D.與AC、MN都不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,矩形所在的平面與平面垂直,且,,分別為的中點(diǎn).

(Ⅰ) 求證:直線與平面平行;
(Ⅱ)若點(diǎn)在直線上,且二面角的大小為,試確定點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖4,是半徑為的半圓,為直徑,點(diǎn)的中點(diǎn),點(diǎn)和點(diǎn)為線段的三等分點(diǎn),平面外一點(diǎn)滿足平面,=.
 
(1)證明:;
(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

地球北緯45°圈上有兩點(diǎn)A、B,點(diǎn)A在東經(jīng)130°處,點(diǎn)B在西經(jīng)140°處,若地球半徑為R,則AB兩點(diǎn)在緯度圈上的劣弧長(zhǎng)與A、B兩點(diǎn)的球面距離之比是     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知平面α∥平面β,P是α,β外一點(diǎn),過點(diǎn)P的直線m與α,β分別交于點(diǎn)A,C,過點(diǎn)P的直線n與α,β分別交于點(diǎn)B,D,且PA=6,AC=9,PD=8,則BD的長(zhǎng)為(  )
A.16B.24或
C.14D.20

查看答案和解析>>

同步練習(xí)冊(cè)答案