已知是定義在上的奇函數(shù),且當x<0時不等式成立,若, ,則大小關系是
A. | B.c > b > a | C. | D.c > a >b |
D
解析試題分析:令h(x)=xf(x),∵函數(shù)y=f(x)以及函數(shù)y=x是R上的奇函數(shù),∴h(x)=xf(x)是R上的偶函數(shù),又∵當x>0時,h′(x)=f(x)+xf′(x)<0,∴函數(shù)h(x)在x∈(0,+∞)時的單調性為單調遞減函數(shù);∴h(x)在x∈(-∞,0)時的單調性為單調遞增函數(shù).若a=30.3•f(30.3),b=logπ3.f(logπ3)又∵函數(shù)y=f(x)是定義在R上的奇函數(shù),∴f(0)=0,從而h(0)=0,因為=-2,所以f()=f(-2)=-f(2),由0<logπ3<1<30.3<30.5<2,所以h(logπ3)<h(30.3)<h(2),即b<a<c,故選D
考點:本題考查了導數(shù)的運用
點評:1)所有的基本函數(shù)的奇偶性;2)抽象問題具體化的思想方法,構造函數(shù)的思想;3)導數(shù)的運算法則:(uv)′=u′v+uv′;4)指對數(shù)函數(shù)的圖象;5)奇偶函數(shù)在對稱區(qū)間上的單調性:奇函數(shù)在對稱區(qū)間上的單調性相同;偶函數(shù)在對稱區(qū)間上的單調性相反;5)奇偶函數(shù)的性質:奇×奇=偶;偶×偶=偶;奇×偶=奇(同號得正、異號得負);奇+奇=奇;偶+偶=偶.本題結合已知構造出h(x)是正確解答的關鍵所在.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com