如圖所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F為CE上的點,且BF⊥平面ACE
(1)求證:AE⊥平面BCE;
(2)求證:AE∥平面BFD;
(3)求三棱錐C-BGF的體積.
科目:高中數學 來源: 題型:
π |
2 |
2 |
3 |
DE |
查看答案和解析>>
科目:高中數學 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數學 來源:2011年江蘇省南京市金陵中學高考數學預測試卷(2)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數學 來源:2010-2011學年江蘇省高三預測卷2數學 題型:解答題
(本小題滿分14分)
如圖,某市擬在道路的一側修建一條運動賽道,賽道的前一部分為曲線段ABC,該曲線段為函數y=(A>0,>0,<<),x∈[-3,0]的圖象,且圖象的最高點為B(-1,);賽道的中間部分為千米的水平跑到CD;賽道的后一部分為以O圓心的一段圓弧.
(1)求,的值和∠DOE的值;
(2)若要在圓弧賽道所對應的扇形區(qū)域內建一個“矩形草坪”,如圖所示,矩形的一邊在道路AE上,一個頂點在扇形半徑OD上.記∠POE=,求當“矩形草坪”的面積最大時的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com