(本小題滿分13分)

過橢圓內一點M(1,1)的弦AB
(1)若點M恰為弦AB的中點,求直線AB的方程;   
(2)求過點M的弦的中點的軌跡方程。    

解:(1)設直線AB的斜率為k,則AB的方程可設為。
  得
………3分


………7分
另法(直接求k):設A(x1,y1),B(x2,y2)。






(2)設弦AB的中點為P(x, y)



……13分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:的左右焦點分別為,點B為橢圓與
軸的正半軸的交點,點P在第一象限內且在橢圓上,且軸垂直, 
(1)求橢圓C的方程;
(2)設點B關于直線的對稱點E(異于點B)在橢圓C上,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)已知橢圓的離心率為,橢圓上任意一點到右焦點的距離的最大值為。
(I)求橢圓的方程;
(II)已知點線段上一個動點(為坐標原點),是否存在過點且與軸不垂直的直線與橢圓交于兩點,使得,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
在平面直角坐標系中有兩定點,,若動點M滿足,設動點M的軌跡為C。
(1)求曲線C的方程;
(2)設直線交曲線C于A、B兩點,交直線于點D,若,證明:D為AB的中點。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓的離心率為,短軸一個端點到右焦點的距離為
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓交于兩點,坐標原點到直線的距離為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題10分)在平面直角坐標系xoy中,設P(x,y)是橢圓上的一個動點,求S=x+y的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓的左焦點F。右頂點A,上頂點B,若,則橢圓的離心率是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知為焦點的橢圓與直線有且僅有一個交點,則橢圓的長軸長為        。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知點F橢圓E:的右焦點,點M在橢圓E上,以M為圓心的圓與x軸切于點F,與y軸交于A、B兩點,且是邊長為2的正三角形;又橢圓E上的P、Q兩點關于直線對稱.
(1)求橢圓E的方程;(2)當直線過點()時,求直線PQ的方程;
(3)若點C是直線上一點,且=,求面積的最大值.

查看答案和解析>>

同步練習冊答案