設(shè)
是兩條不同的直線,
是兩個不同的平面,下列命題中正確的是( )
試題分析:對A.
可以平行,還可以成其它任意角度,不一定是互相垂直;
對 B.
,則在
內(nèi)必有直線
從而
,所以
,由平面與平面垂直的判定定理知
.故B正確.
對C、D,從下面兩圖可以看出,不成立.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在三棱錐
中,點
分別是棱
的中點.
(1)求證:
//平面
;
(2)若平面
平面
,
,求證:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知平行六面體ABCD—A
1B
1C
1D
1的底面為正方形,O
1、O分別為上、下底面的中心,且A
1在底面ABCD上的射影是O。
(Ⅰ)求證:平面O
1DC⊥平面ABCD;
(Ⅱ)若∠A
1AB=60°,求平面BAA
1與平面CAA
1的夾角的余弦值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐
中,底面
是菱形,
,且側(cè)面
平面
,點
是棱
的中點.
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
;
(Ⅲ)若
,求證:平面
平面
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在三棱錐
中,
,
,
°,平面
平面
,
、
分別為
、
中點.
(1)求證:
∥平面
;
(2)求證:
;
(3)求二面角
的大。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB的中點,D為PB的中點,且△PMB為正三角形.
(1)求證:DM∥平面APC; (2)求證:平面ABC⊥平面APC.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖四棱錐
中,底面
是平行四邊形,
平面
,垂足為
,
在
上且
,
,
,
是
的中點,四面體
的體積為
.
(1)求過點P,C,B,G四點的球的表面積;
(2)求直線
到平面
所成角的正弦值;
(3)在棱
上是否存在一點
,使
,若存在,確定點
的位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)
是不同的直線,
是不同的平面,下列命題中正確的是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,則下列命題中正確的是( )
A.若m∥α,n∥α,則m∥n |
B.若m∥α,m∥β,則α∥β |
C.若m∥n,m⊥α,則n⊥α |
D.若m∥α,α⊥β,則m⊥β |
查看答案和解析>>