已知橢圓,橢圓的長(zhǎng)軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓上, ,求直線的方程.
(1);(2)

試題分析:(1)由題意可設(shè),所求橢圓的方程為,且其離心率可由橢圓的方程知,因此,解之得,從而可求出橢圓的方程為.
(2)由題意知,所求直線過(guò)原點(diǎn),又橢圓短半軸為1,橢圓的長(zhǎng)半軸為4,所以直線不與軸重合,即直線的斜率存在,可設(shè)直線的斜率為,直線的方程為,又設(shè)點(diǎn)、的坐標(biāo)分別為、,分別聯(lián)立直線與橢圓、的方程消去、可得,又,即,所以,解得,從而可求出直線的直線方程為.
試題解析:(1)由已知可設(shè)橢圓的方程為 
其離心率為,故,則 
故橢圓的方程為       5分
(2)解法一 兩點(diǎn)的坐標(biāo)分別記為 
及(1)知,三點(diǎn)共線且點(diǎn),不在軸上,
因此可以設(shè)直線的方程為 
代入中,得,所以 
代入中,則,所以 
,得,即 
解得,故直線的方程為        12分
解法二 兩點(diǎn)的坐標(biāo)分別記為 
及(1)知,三點(diǎn)共線且點(diǎn),不在軸上,
因此可以設(shè)直線的方程為 
代入中,得,所以 
,得, 
代入中,得,即 
解得,故直線的方程為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線在點(diǎn),處的切線垂直相交于點(diǎn),直線與橢圓相交于,兩點(diǎn).

(1)求拋物線的焦點(diǎn)與橢圓的左焦點(diǎn)的距離;
(2)設(shè)點(diǎn)到直線的距離為,試問(wèn):是否存在直線,使得,,成等比數(shù)列?若存在,求直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓兩焦點(diǎn)坐標(biāo)分別為,,且經(jīng)過(guò)點(diǎn)
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn),直線與橢圓交于兩點(diǎn).若△是以為直角頂點(diǎn)的等腰直角三角形,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

給定橢圓C:,若橢圓C的一個(gè)焦點(diǎn)為F(,0),其短軸上的一個(gè)端點(diǎn)到F的距離為
(I)求橢圓C的方程;
(II)已知斜率為k(k≠0)的直線l與橢圓C交于不同的兩點(diǎn)A,B,點(diǎn)Q滿足=0,其中N為橢圓的下頂點(diǎn),求直線在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,右焦點(diǎn)為,右頂點(diǎn)在圓上.
(Ⅰ)求橢圓和圓的方程;
(Ⅱ)已知過(guò)點(diǎn)的直線與橢圓交于另一點(diǎn),與圓交于另一點(diǎn).請(qǐng)判斷是否存在斜率不為0的直線,使點(diǎn)恰好為線段的中點(diǎn),若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分)點(diǎn)P為圓上一個(gè)動(dòng)點(diǎn),M為點(diǎn)P在y軸上的投影,動(dòng)點(diǎn)Q滿足
(1)求動(dòng)點(diǎn)Q的軌跡C的方程;
(2)一條直線l過(guò)點(diǎn),交曲線C于A、B兩點(diǎn),且A、B同在以點(diǎn)D(0,1)為圓心的圓上,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線軸旋轉(zhuǎn)一周形成一個(gè)如圖所示的旋轉(zhuǎn)體,在此旋轉(zhuǎn)體內(nèi)水平放入一個(gè)正方體,該正方體的一個(gè)面恰好與旋轉(zhuǎn)體的開(kāi)口面平齊,則此正方體的體積是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線的兩條漸近線與拋物線的準(zhǔn)線分別交于、兩點(diǎn),為坐標(biāo)原點(diǎn),的面積為,則雙曲線的離心率(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)、分別為雙曲線的左、右焦點(diǎn),為雙曲線的左頂點(diǎn),以為直徑的圓交雙曲線某條漸過(guò)線、兩點(diǎn),且滿足,則該雙曲線的離心率為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案