【題目】
已知橢圓C: (a>b>0)的左、右焦點(diǎn)分別為F1,F2,離心率為,直線y=x+b截得橢圓C的弦長(zhǎng)為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)(m,0)作圓x2+y2=1的切線,交橢圓C于點(diǎn)A,B,求|AB|的最大值,并求取得最大值時(shí)m的值.
【答案】(1) (2) |AB|最大為,m=±1.
【解析】試題分析:(1)利用條件布列關(guān)于a,b方程組,即可得到橢圓C的方程;(2)討論直線的斜率,進(jìn)而聯(lián)立方程,(1+2k2)x2-4k2mx+2k2m2-2=0,表示弦長(zhǎng),進(jìn)而得到|AB|的最大值.
試題解析:
(Ⅰ)由e==,a2=b2+c2得a2=2c2,b2=c2,
由得
∵=b=,∴b=1,∴a=,
∴橢圓C的方程為+y2=1.
(Ⅱ)當(dāng)AB與x軸垂直時(shí),+y2=1,|y|=,|AB|=,
當(dāng)AB與x軸不垂直時(shí),
設(shè)AB方程為y=k(x-m),
由得(1+2k2)x2-4k2mx+2k2m2-2=0,
Δ>0時(shí),設(shè)A(x1,y1),B(x2,y2),
則x1+x2=,x1x2=,
由=1得k2m2=k2+1,
∴|AB|==≤=,
當(dāng)且僅當(dāng)|m|=1時(shí)取“=”,∴|AB|<,
∴當(dāng)AB⊥x軸時(shí),|AB|最大為,m=±1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義在上的單調(diào)函數(shù),且對(duì)于任意正數(shù)有,已知,若一個(gè)各項(xiàng)均為正數(shù)的數(shù)列滿足,其中是數(shù)列的前項(xiàng)和,則數(shù)列中第18項(xiàng)( )
A. B. 9 C. 18 D. 36
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),f(x+1)為奇函數(shù),f(0)=0,當(dāng)x∈(0,1]時(shí),f(x)=log2x,則在區(qū)間(8,9)內(nèi)滿足方程f(x)+2=的實(shí)數(shù)x為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分別為線段AD,PC的中點(diǎn).
(1)求證:AP∥平面BEF;
(2)求證:BE⊥平面PAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的準(zhǔn)線方程為x=-1,過定點(diǎn)M(m,0)(m>0)作斜率為k的直線l交拋物線C于A,B兩點(diǎn),E是M點(diǎn)關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn),若直線AE和BE的斜率分別為k1,k2,則k1+k2=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某P2P平臺(tái)需要了解該平臺(tái)投資者的大致年齡分布,發(fā)現(xiàn)其投資者年齡大多集中在區(qū)間[20,50]歲之間,對(duì)區(qū)間[20,50]歲的人群隨機(jī)抽取20人進(jìn)行了一次理財(cái)習(xí)慣調(diào)查,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
組數(shù) | 分組 | 人數(shù)(單位:人) |
第一組 | [20,25) | 2 |
第二組 | [25,30) | a |
第三組 | [30,35) | 5 |
第四組 | [35,40) | 4 |
第五組 | [40,45) | 3 |
第六組 | [45,50] | 2 |
(Ⅰ)求a的值并畫出頻率分布直方圖;
(Ⅱ)在統(tǒng)計(jì)表的第五與第六組的5人中,隨機(jī)選取2人,求這2人的年齡都小于45歲的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量a=(sin x,mcos x),b=(3,-1).
(1)若a∥b,且m=1,求2sin2x-3cos2x的值;
(2)若函數(shù)f(x)=a·b的圖象關(guān)于直線對(duì)稱,求函數(shù)f(2x)在上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面平面, , , , 分別為線段上的點(diǎn),且, , .
(1)求證: 平面;
(2)若與平面所成的角為,求平面與平面所成的銳二面角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(I)若函數(shù)處取得極值,求實(shí)數(shù)的值;并求此時(shí)上的最大值;
(Ⅱ)若函數(shù)不存在零點(diǎn),求實(shí)數(shù)a的取值范圍;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com