【題目】“珠算之父”程大為是我國明代偉大數(shù)學(xué)家,他的應(yīng)用數(shù)學(xué)巨著《算法統(tǒng)綜》的問世,標志著我國的算法由籌算到珠算轉(zhuǎn)變的完成,程大位在《算法統(tǒng)綜》中常以詩歌的形式呈現(xiàn)數(shù)學(xué)問題,其中有一首“竹筒容米”問題:“家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)三升九,上稍四節(jié)儲三升,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明”(【注】三升九:3.9升,次第盛;盛米容積依次相差同一數(shù)量.)用你所學(xué)的數(shù)學(xué)知識求得中間兩節(jié)的容積為( )
A. 升 B. 升 C. 升 D. 升
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機詢問110名性別不同的大學(xué)生是否愛好某項運動,得到如表的列聯(lián)表:
算得,K2≈7.8.見附表:參照附表,得到的正確結(jié)論是( 。
男 | 女 | 總計 | |||||
愛好 | 40 | 20 | 60 | ||||
不愛好 | 20 | 30 | 50 | ||||
總計 | 60 | 50 | 110 | ||||
P(K2≥k) | 0.050 | 0.010 | 0.001 | ||||
k | 3.841 | 6.635 | 10.828 | ||||
A. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關(guān)”
B. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關(guān)”
C. 有99%以上的把握認為“愛好該項運動與性別有關(guān)”
D. 有99%以上的把握認為“愛好該項運動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點為,右頂點為,上頂點為,過、、三點的圓的圓心坐標為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線(為常數(shù), )與橢圓交于不同的兩點和.
(。┊斨本過,且時,求直線的方程;
(ⅱ)當坐標原點到直線的距離為,且面積為時,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在高中學(xué)習(xí)過程中,同學(xué)們經(jīng)常這樣說:“如果物理成績好,那么學(xué)習(xí)數(shù)學(xué)就沒什么問題.”某班針對“高中生物理學(xué)習(xí)對數(shù)學(xué)學(xué)習(xí)的影響”進行研究,得到了學(xué)生的物理成績與數(shù)學(xué)成績具有線性相關(guān)關(guān)系的結(jié)論.現(xiàn)從該班隨機抽取5名學(xué)生在一次考試中的物理和數(shù)學(xué)成績,如下表:
編號 成績 | 1 | 2 | 3 | 4 | 5 |
物理() | 90 | 85 | 74 | 68 | 63 |
數(shù)學(xué)() | 130 | 125 | 110 | 95 | 90 |
(1)求數(shù)學(xué)成績關(guān)于物理成績的線性回歸方程(精確到),若某位學(xué)生的物理成績?yōu)?0分,預(yù)測他的數(shù)學(xué)成績;
(2)要從抽取的五位學(xué)生中隨機選出三位參加一項知識競賽,以表示選中的學(xué)生的數(shù)學(xué)成績高于100分的人數(shù),求隨機變量的分布列及數(shù)學(xué)期望.
(參數(shù)公式: , .)
參考數(shù)據(jù): ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為,雙曲線的一條漸近線與軸所成的夾角為,且雙曲線的焦距為.
(1)求橢圓的方程;
(2)設(shè)分別為橢圓的左,右焦點,過作直線 (與軸不重合)交橢圓于, 兩點,線段的中點為,記直線的斜率為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(Ⅰ)求在區(qū)間上的最小值;
(Ⅱ)設(shè),當時, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】觀察圖中各正方形圖案,每條邊上有an個圓點,第an個圖案中圓點的個數(shù)是an,按此規(guī)律推斷出所有圓點總和Sn與n的關(guān)系式為( 。
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, , , , 平面.
(1)求證: 平面;
(2)若為線段的中點,且過三點的平面與線段交于點,確定點的位置,說明理由;并求三棱錐的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測出其中一項質(zhì)量指標存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲,乙兩條流水線的生產(chǎn)情況,隨機地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測出它們的這一項質(zhì)量指標值.若該項質(zhì)量指標值落在內(nèi),則為合格品,否則為不合格品.表1是甲流水線樣本的頻數(shù)分布表,圖1是乙流水線樣本的頻率分布直方圖.
(1)根據(jù)圖,1估計乙流水線生產(chǎn)產(chǎn)品該質(zhì)量指標值的中位數(shù);
(2)若將頻率視為概率,某個月內(nèi)甲,乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲,乙兩條流水線分別生產(chǎn)出不合格品約多少件?
(3)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有85%的把握認為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與甲,乙兩條流水線的選擇有關(guān)”?
附: (其中為樣本容量)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com