設(shè)定義在區(qū)間[x1,x2]上的函數(shù)y=f(x)的圖象為C,M是C上的任意一點,O為坐標原點,設(shè)向量
,當實數(shù)λ滿足x=λx1+(1-λ)x2時,記向量
。定義“函數(shù)y=f(x)在區(qū)間[x1,x2]上可在標準k下線性近似”是指“≤k恒成立”,其中k是一個確定的正數(shù),
(Ⅰ)設(shè)函數(shù)f(x)=x2在區(qū)間[0,1]上可在標準k下線性近似,求k的取值范圍;
(Ⅱ)求證:函數(shù)g(x)=lnx在區(qū)間(m∈R)上可在標準下線性近似。(參考數(shù)據(jù):e=2.718,ln(e-1)=0.541)
解:(Ⅰ)由得到,
所以B,N,A三點共線,
又由x=λx1+(1-λ)x2與向量,得N與M的橫坐標相同,
對于[0,1]上的函數(shù),y=x2,A(0,0),B(1,1),
則有=,故,
所以k的取值范圍是;
(Ⅱ)對于上的函數(shù)y=lnx,,
則直線AB的方程
令h(x)=lnx-m-,其中x∈(m∈R),
于是h′(x)=,
列表如下:

=h(x),且在處取得最大值,

從而命題成立。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在區(qū)間[x1,x2]上的函數(shù)y=f(x)的圖象為C,M是C上的任意一點,O為坐標原點,設(shè)向
OA
=(x1,f(x1)),
OB
=(x2,  f(x2))
,
OM
=(x,y),當實數(shù)λ滿足x=λ x1+(1-λ) x2時,記向量
ON
OA
+(1-λ)
OB
.定義“函數(shù)y=f(x)在區(qū)間[x1,x2]上可在標準k下線性近似”是指“|
MN
|≤
k恒成立”,其中k是一個確定的正數(shù).
(1)設(shè)函數(shù) f(x)=x2在區(qū)間[0,1]上可在標準k下線性近似,求k的取值范圍;
(2)求證:函數(shù)g(x)=lnx在區(qū)間[em,em+1](m∈R)上可在標準k=
1
8
下線性近似.
(參考數(shù)據(jù):e=2.718,ln(e-1)=0.541)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在區(qū)間[x1,x2]上的函數(shù)y=f(x)的圖象為C,點A、B的坐標分別為(x1,f(x1)),(x2f(x2))且M(x,f(x))為圖象C上的任意一點,O為坐標原點,當實數(shù)λ滿足x=λx1+(1-λ)x2時,記向量
ON
OA
+(1-λ)
OB
.若|
MN
|≤k
恒成立,則稱函數(shù)y=f(x)在區(qū)間[x1,x2]上可在標準k下線性近似,其中k是一個確定的正數(shù).
(Ⅰ)求證:A、B、N三點共線
(Ⅱ)設(shè)函數(shù)f(x)=x2在區(qū)間[0,1]上可的標準k下線性近似,求k的取值范圍;
(Ⅲ)求證:函數(shù)g(x)=lnx在區(qū)間(em,em+1)(m∈R)上可在標準k=
1
8
下線性近似.
(參考數(shù)據(jù):e=2.718,ln(e-1)=0.541)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省南通市高三第二次模擬考試數(shù)學(xué)試題 題型:解答題

設(shè)定義在區(qū)間[x1, x2]上的函數(shù)y=f(x)的圖象為C,M是C上的任意一點,O為坐標原點,設(shè)向

=,,=(x,y),當實數(shù)λ滿足x=λ x1+(1-λ) x2時,記向

+(1-λ).定義“函數(shù)y=f(x)在區(qū)間[x1,x2]上可在標準k下線性近似”是指

k恒成立”,其中k是一個確定的正數(shù).

(1)設(shè)函數(shù) f(x)=x2在區(qū)間[0,1]上可在標準k下線性近似,求k的取值范圍;

(2)求證:函數(shù)在區(qū)間上可在標準k=下線性近似.

(參考數(shù)據(jù):e=2.718,ln(e-1)=0.541)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:揚州模擬 題型:解答題

設(shè)定義在區(qū)間[x1,x2]上的函數(shù)y=f(x)的圖象為C,M是C上的任意一點,O為坐標原點,設(shè)向
OA
=(x1,f(x1)),
OB
=(x2,  f(x2))
OM
=(x,y),當實數(shù)λ滿足x=λ x1+(1-λ) x2時,記向量
ON
OA
+(1-λ)
OB
.定義“函數(shù)y=f(x)在區(qū)間[x1,x2]上可在標準k下線性近似”是指“|
MN
|≤
k恒成立”,其中k是一個確定的正數(shù).
(1)設(shè)函數(shù) f(x)=x2在區(qū)間[0,1]上可在標準k下線性近似,求k的取值范圍;
(2)求證:函數(shù)g(x)=lnx在區(qū)間[em,em+1](m∈R)上可在標準k=
1
8
下線性近似.
(參考數(shù)據(jù):e=2.718,ln(e-1)=0.541)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分16分)

設(shè)定義在區(qū)間[x1x2]上的函數(shù)y=f(x)的圖象為C,MC上的任意一點,O為坐標原點,設(shè)向

=,=(xy),當實數(shù)λ滿足x=λ x1+(1-λ) x2時,記向

=λ+(1-λ).定義“函數(shù)y=f(x)在區(qū)間[x1,x2]上可在標準k下線性近似”是指

k恒成立”,其中k是一個確定的正數(shù).

(1)設(shè)函數(shù) f(x)=x2在區(qū)間[0,1]上可在標準k下線性近似,求k的取值范圍;

(2)求證:函數(shù)在區(qū)間上可在標準k=下線性近似.

(參考數(shù)據(jù):e=2.718,ln(e-1)=0.541)

查看答案和解析>>

同步練習(xí)冊答案