已知三個(gè)不全相等的實(shí)數(shù)m,p,q成等比數(shù)列,則可能成等差數(shù)列的是( 。
A、m,p,q
B、m2,p2,q2
C、m3,p3,q3
D、
m
,
p
q
考點(diǎn):等比數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:設(shè)這3個(gè)數(shù)分別為1,-1,1,則滿足可能成等差數(shù)列的只有選項(xiàng)B,其余的都不滿足條件,再對(duì)選項(xiàng)進(jìn)行判斷即可.
解答: 解:∵已知三個(gè)不全相等的實(shí)數(shù)a,b,c成等比數(shù)列,設(shè)這3個(gè)數(shù)分別為1,-1,1,
則滿足可能成等差數(shù)列的只有選項(xiàng)B,其余的都不滿足條件,
故選B.
點(diǎn)評(píng):本題考查等比數(shù)列的性質(zhì),考查等差數(shù)列的判斷,正確運(yùn)用等差數(shù)列、等比數(shù)列的性質(zhì)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列三個(gè)命題:①函數(shù)y=tanx在第一象限是增函數(shù);②奇函數(shù)的圖象一定過(guò)原點(diǎn);③函數(shù)y=sin2x+cos2x的最小正周期為π,其中假命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若|m-n|=n-m,且|m|=4,|n|=3,則(m+n)2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

假設(shè)你有一筆資金用于投資,現(xiàn)有三種投資方案供你選擇,這三種方案的回報(bào)如下:
方案一:每天回報(bào)40元;
方案二:第一天回報(bào)10元,以后每天的回報(bào)比前一天多回報(bào)10元;
方案三:第一天回報(bào)0.4元,以后每天的回報(bào)是前一天的兩倍.
若投資的時(shí)間為8~10天,為使投資的回報(bào)最多,你會(huì)選擇哪種方案投資?( 。
A、方案一B、方案二
C、方案三D、都可以

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,在區(qū)間(0,+∞)內(nèi)為減函數(shù)的是(  )
A、y=|x|
B、y=3x
C、y=-x2
D、y=-
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若
c2-a2
b2+ab
=1,則∠C的大小為( 。
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={y∈R|y=2014x},B={y∈R|x2+y2=4},則A∩B等于( 。
A、{(-
2
,-
2
),(
2
,
2
)}
B、R
C、{y|-2≤y≤2}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)f(x)=2sin(2x-
π
3
)的圖象向左平移
π
6
個(gè)單位后,所得圖象的一個(gè)對(duì)稱中心是( 。
A、(
π
4
,0)
B、(
π
2
,0)
C、(
π
3
,0)
D、(
π
12
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)平面向量
a
,
b
,
c
均為非零向量,則“
a
•(
b
-
c
)=0”是“
b
=
c
”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案