【題目】已知函數(shù)g(x)=ax2﹣2ax+b+1(a>0)在區(qū)間[2,3]上有最大值4和最小值1.設(shè)f(x)=
(1)求a、b的值;
(2)若不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上有解,求實數(shù)k的取值范圍.

【答案】
(1)解:函數(shù)g(x)=ax2﹣2ax+b+1=a(x﹣1)2+1+b﹣a,

因為a>0,所以g(x)在區(qū)間[2,3]上是增函數(shù),故 ,解得


(2)解:由已知可得f(x)=x+ ﹣2,所以,不等式f(2x)﹣k2x≥0可化為 2x+ ﹣2≥k2x,

可化為 1+ ﹣2 ≥k,令t= ,則 k≤t2﹣2t+1.

因 x∈[﹣1,1],故 t∈[ ,2].故k≤t2﹣2t+1在t∈[ ,2]上能成立.

記h(t)=t2﹣2t+1,因為 t∈[ ,2],故 h(t)max =h(2)=1,

所以k的取值范圍是(﹣∞,1]


【解析】(1)由函數(shù)g(x)=a(x﹣1)2+1+b﹣a,a>0,所以g(x)在區(qū)間[2,3]上是增函數(shù),故 ,由此解得a、b的值.(2)不等式可化為 2x+ ﹣2≥k2x , 故有 k≤t2﹣2t+1,t∈[ ,2],求出h(t)=t2﹣2t+1的最大值,從而求得k的取值范圍.
【考點精析】通過靈活運用二次函數(shù)在閉區(qū)間上的最值和函數(shù)的零點與方程根的關(guān)系,掌握當(dāng)時,當(dāng)時,;當(dāng)時在上遞減,當(dāng)時,;二次函數(shù)的零點:(1)△>0,方程 有兩不等實根,二次函數(shù)的圖象與 軸有兩個交點,二次函數(shù)有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數(shù)的圖象與 軸有一個交點,二次函數(shù)有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數(shù)的圖象與 軸無交點,二次函數(shù)無零點即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為自然對數(shù)的底數(shù)).

(1)試討論函數(shù)的極值情況;

(2)證明:當(dāng)時,總有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=m2x+x2+nx,若{x|f(x)=0}={x|f(f(x))=0}≠,則m+n的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,點D是BC的中點.

(1)求證:A1B∥平面ADC1;
(2)求平面ADC1與ABA1所成二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,a1= ,且前n項的算術(shù)平均數(shù)等于第n項的2n﹣1倍(n∈N*).
(1)寫出此數(shù)列的前5項;
(2)歸納猜想{an}的通項公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列集合A到集合B的對應(yīng)中,構(gòu)成映射的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=a3x+1 , g(x)=( 5x2 , 其中a>0,且a≠1.
(1)若0<a<1,求滿足f(x)<1的x的取值范圍;
(2)求關(guān)于x的不等式f(x)≥g(x)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且f(x)滿足f(x+π)=f(x),當(dāng)[0, )時,f(x)=tanx,則f( )=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)= ,x∈(﹣2,2)
(1)判斷f(x)的奇偶性并說明理由;
(2)求證:函數(shù)f(x)在(﹣2,2)上是增函數(shù);
(3)若f(2+a)+f(1﹣2a)>0,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案