5.若函數(shù)f(x)=$\frac{x}{{\sqrt{a{x^2}+ax+1}}}$的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍是0≤a<4.

分析 把函數(shù)f(x)=$\frac{x}{{\sqrt{a{x^2}+ax+1}}}$的定義域?yàn)镽,轉(zhuǎn)化為ax2+ax+1>0對(duì)任意實(shí)數(shù)x恒成立.然后分a=0和a≠0分類(lèi)求解得答案.

解答 解:∵函數(shù)f(x)=$\frac{x}{{\sqrt{a{x^2}+ax+1}}}$的定義域?yàn)镽,
∴ax2+ax+1>0對(duì)任意實(shí)數(shù)x恒成立.
若a=0,不等式成立;
若a≠0,則$\left\{\begin{array}{l}{a>0}\\{{a}^{2}-4a<0}\end{array}\right.$,解得0<a<4.
綜上:0≤a<4.
故答案為:0≤a<4.

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,考查數(shù)學(xué)轉(zhuǎn)化思想方法及分類(lèi)討論的數(shù)學(xué)思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列函數(shù)中,既不是奇函數(shù),也不是偶函數(shù)的是( 。
A.y=x+sin2xB.y=2x+$\frac{1}{{2}^{x}}$C.y=x2+sinxD.y=x2-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿(mǎn)足b1=1,b2=$\frac{1}{3}$,anbn+1+bn+1=nbn,.
(1)求a1的值并求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知集合A={a,b},B={a,b,c,d,e},滿(mǎn)足條件A⊆M⊆B的集合M的個(gè)數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在圓錐PO中,已知PO=$\sqrt{2}$,⊙O 的直徑AB=2,C是弧$\widehat{AB}$的中點(diǎn),D為AC的中點(diǎn).
(1)證明:AC⊥平面POD;
(2)求二面角B-PA-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在△ABC中,內(nèi)角A,B,C所對(duì)的邊a,b,c且a>c,已知c•acosB=2,cosB=$\frac{1}{3}$,b=3,求:
(1)a和c的值;
(2)cos(B-C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2},x≤0\\-{x^2},x>0.\end{array}$
(1)求f[f(2)]并判斷函數(shù)f(x)的奇偶性;
(2)若對(duì)任意t∈[1,2],f(t2-2t)+f(k-2t2)<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=x3+ax2-a2x-1,a>0.
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的不等式f(x)≤0在[1,+∞)上有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.直線l:x+$\sqrt{3}$y+6=0,則直線的傾斜角α等于(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步練習(xí)冊(cè)答案