已知函數(shù)
(1)當(dāng)時(shí),判斷的單調(diào)性,并用定義證明.
(2)若對(duì)任意,不等式恒成立,求的取值范圍;
(3)討論零點(diǎn)的個(gè)數(shù).

(1)單調(diào)遞減函數(shù);(2);(3)當(dāng)時(shí),有1個(gè)零點(diǎn).當(dāng)時(shí),有2個(gè)零點(diǎn);當(dāng)時(shí),有3個(gè)零點(diǎn).

解析試題分析:(1)先根據(jù)條件化簡(jiǎn)函數(shù)式,根據(jù)常見(jiàn)函數(shù)的單調(diào)性及單調(diào)性運(yùn)算法則,作出單調(diào)性判定,再用定義證明;(2)將題中所給不等式具體化,轉(zhuǎn)化為不等式恒成立問(wèn)題,通過(guò)參變分離化為,求出的最大值,則m的范圍就是m大于的最大值;(3)將函數(shù)零點(diǎn)個(gè)數(shù)轉(zhuǎn)化為方程解的個(gè)數(shù),再轉(zhuǎn)化為函數(shù)交點(diǎn)個(gè)數(shù),運(yùn)用數(shù)形結(jié)合思想求解.
試題解析:(1)當(dāng),且時(shí),是單調(diào)遞減的.       1分
證明:設(shè),則



                                        3分
,所以,
所以
所以,即,
故當(dāng)時(shí),上單調(diào)遞減的.                4分
(2)由,
變形為,即
,
當(dāng)時(shí),
所以.               9分
(3)由可得,變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/33/4/wpuok3.png" style="vertical-align:middle;" />

的圖像及直線,由圖像可得:
當(dāng)時(shí),有1個(gè)零點(diǎn).
當(dāng)時(shí),有2個(gè)零點(diǎn);
當(dāng)時(shí),有3個(gè)零點(diǎn).                  14分
考點(diǎn):1.函數(shù)奇偶性的判定;2.不等式恒成立問(wèn)題;3.函數(shù)零點(diǎn);4.數(shù)形結(jié)合思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,為了制作一個(gè)圓柱形燈籠,先要制作4個(gè)全等的矩形骨架,總計(jì)耗用9.6米鐵絲,再用S平方米塑料片制成圓柱的側(cè)面和下底面(不安裝上底面).當(dāng)圓柱底面半徑r取何值時(shí),S取得最大值?并求出該最大值(結(jié)果精確到0.01平方米).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知冪函數(shù)y=x3m-9(m∈N*)的圖象關(guān)于y軸對(duì)稱,且在(0,+∞)上是減函數(shù).
(1)求m的值;
(2)求滿足不等式(a+1)-<(3-2a)-的實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量y(單
位:千克)與銷售價(jià)格x(單位:元/千克)滿足關(guān)系式y+10(x-6)2,其中3<x<6,a為常數(shù).已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
①求a的值;
②若該商品的成本為3元/千克,試確定銷售價(jià)格x的值,使商場(chǎng)每日銷售該商品所獲得的利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知
(1)設(shè),求的最大值與最小值;
(2)求的最大值與最小值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)x千件,需另投入成本為C(x),當(dāng)年產(chǎn)量不足80千件時(shí),C(x)=x2+10x(萬(wàn)元).當(dāng)年產(chǎn)量不小于80千件時(shí),C(x)=51x+-1450(萬(wàn)元).每件商品售價(jià)為0.05萬(wàn)元.通過(guò)市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(rùn)L(x)(萬(wàn)元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式.
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

東海水晶制品廠去年的年產(chǎn)量為10萬(wàn)件,每件水晶產(chǎn)品的銷售價(jià)格為100元,固定成本為80元.從今年起,工廠投入100萬(wàn)元科技成本,并計(jì)劃以后每年比上一年多投入100萬(wàn)元科技成本.預(yù)計(jì)產(chǎn)量每年遞增1萬(wàn)件,每件水晶產(chǎn)品的固定成本g(n)與科技成本的投入次數(shù)n的關(guān)系是g(n)=.若水晶產(chǎn)品的銷售價(jià)格不變,第n次投入后的年利潤(rùn)為f(n)萬(wàn)元.
(1)求出f(n)的表達(dá)式.
(2)求從今年算起第幾年利潤(rùn)最高?最高利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=-x2+2ex+m-1,g(x)=x+ (x>0).
(1)若g(x)=m有零點(diǎn),求m的取值范圍;
(2)確定m的取值范圍,使得g(x)-f(x)=0有兩個(gè)相異實(shí)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為加快旅游業(yè)的發(fā)展,新余市2013年面向國(guó)內(nèi)發(fā)行總量為200萬(wàn)張的“仙女湖之旅”優(yōu)惠卡,向省外人士發(fā)行的是金卡,向省內(nèi)人士發(fā)行的是銀卡.某旅游公司組織了一個(gè)有36名游客的旅游團(tuán)到新余仙女湖旅游,其中是省外游客,其余是省內(nèi)游客.在省外游客中有持金卡,在省內(nèi)游客中有持銀卡.(1)在該團(tuán)中隨機(jī)采訪2名游客,求恰有1人持銀卡的概率;
(2)在該團(tuán)中隨機(jī)采訪2名游客,求其中持金卡與持銀卡人數(shù)相等概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案