【題目】已知命題:“雙曲線任意一點到直線的距離分別記作,則為定值”為真命題.
(1)求出的值.
(2)已知直線 關于y軸對稱且使得上的任意點到的距離滿足為定值,求的方程.
(3)已知直線是與(2)中某一條直線平行(或重合)且與橢圓交于兩點,求的最大值.
【答案】(1);(2)或者;(3).
【解析】
(1)設,利用點在雙曲線上和點到直線的距離公式可求為定值且定值為.
(2)設,設為橢圓任意點,利用點到直線的距離公式可求,取,可計算出的值,再驗證對任意的都成立,從而可求直線的方程.
(3)設直線,,聯(lián)立直線方程和橢圓方程,可證,對該式兩邊平方后再利用點在橢圓上化簡可得,從而,根據(jù)后兩個結(jié)論可證,利用基本不等式可求的最大值.
(1)設,則
又到直線距離分別為:
,所以,
故為定值且定值為.
(2)設,設為橢圓任意點,
則到的距離分別為:
,
所以
取,,因為為定值,
故,
所以, 故,
即或,
又當或時,對橢圓上任意的,
總有,該值為定值.
故的方程為或者.
即或者.
(3)設直線,,
由可得,
又
.
所以,即,
整理得到,所以,
故.
因為,
故,當且僅當時等號成立,
所以的最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】年月,中國良渚古城遺址獲準列入世界遺產(chǎn)名錄,標志著中華五千年文明史得到國際社會認可.良渚古城遺址是人類早期城市文明的范例,實證了中華五千年文明史.考古科學家在測定遺址年齡的過程中利用了“放射性物質(zhì)因衰變而減少”這一規(guī)律.已知樣本中碳的質(zhì)量隨時間(單位:年)的衰變規(guī)律滿足(表示碳原有的質(zhì)量),則經(jīng)過年后,碳的質(zhì)量變?yōu)樵瓉淼?/span>________;經(jīng)過測定,良渚古城遺址文物樣本中碳的質(zhì)量是原來的至,據(jù)此推測良渚古城存在的時期距今約在________年到年之間.(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設長方體中,,,是的中點,點在線段上.
(1)試在線段上確定點的位置,使得異面直線與所成角為,并請說明你的理由;
(2)在滿足(1)的條件下,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在棱長為2的正方體中,點是對角線上的點(點與、不重合),則下列結(jié)論正確的個數(shù)為( )
①存在點,使得平面平面;
②存在點,使得平面;
③若的面積為,則;
④若、分別是在平面與平面的正投影的面積,則存在點,使得.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,離心率為,過作直線與橢圓交于,兩點,的周長為8.
(1)求橢圓的標準方程;
(2)問:的內(nèi)切圓面積是否有最大值?若有,試求出最大值;若沒有,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點,是的中點.分別沿,將四邊形和折起,使,重合于點,得到如圖2所示的幾何體.在圖2中,,分別為,的中點.
(1)證明:平面.
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)求函數(shù)在上的最值;
(3)當時,若函數(shù)恰有兩個不同的零點,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若是函數(shù)的極值點,求的值及函數(shù)的極值;
(2)討論函數(shù)的單調(diào)性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com