【題目】如圖,在多面體中,四邊形是菱形,,,平面,,,的中點(diǎn).

(1)求證:平面平面

(2)求直線與平面所成的角的正弦值.

【答案】()詳見解析;()

【解析】試題分析:Ⅰ)連接,所以, ,即可利用面面平行的判定定理,證得結(jié)論;

Ⅱ)如圖,以O為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求的平面的一個(gè)法向量 ,利用向量和向量夾角公式,即可求解與平面所成角的正弦值

試題解析:

Ⅰ)連接BDACO,易知OBD的中點(diǎn),故OG//BEBEBEF,OG在面BEF外,所以OG//BEF;

EF//ACAC在面BEF外,AC//BEF,又ACOG相交于點(diǎn)O,面ACG有兩條相交直線與面BEF平行,故面ACG∥面BEF;

Ⅱ)如圖,以O為坐標(biāo)原點(diǎn),分別以OC、ODOFx、y、z軸建立空間直角坐標(biāo)系,則 , ,, ,,

設(shè)面ABF的法向量為,依題意有,,令,,,

直線AD與面ABF成的角的正弦值是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,曲線y=g(x)x=1處的切線方程為x-2y-1=0.    

(Ⅰ),b;

(Ⅱ),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為促進(jìn)全面健身運(yùn)動,某地跑步團(tuán)體對本團(tuán)內(nèi)的跑友每周的跑步千米數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取的100名跑友,分別統(tǒng)計(jì)他們一周跑步的千米數(shù),并繪制了如圖頻率分布直方圖.

1)由頻率分布直方圖計(jì)算跑步千米數(shù)不小于70千米的人數(shù);

2)已知跑步千米數(shù)在的人數(shù)是跑步千米數(shù)在,跑步千米數(shù)在的人數(shù)是跑步千米數(shù)在,現(xiàn)在從跑步千米數(shù)在的跑友中抽取3名代表發(fā)言,用表示所選的3人中跑步千米數(shù)在的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)上的單調(diào)性;

2)當(dāng)時(shí),若時(shí),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

1)求頻率分布直方圖中的值;

2)估計(jì)該企業(yè)的職工對該部門評分不低于80的概率;

3)從評分在的受訪職工中,隨機(jī)抽取2人,求此2人評分都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)斜率不為0的直線與拋物線交于兩點(diǎn),與橢圓交于兩點(diǎn),記直線的斜率分別為.

(1)求證:的值與直線的斜率的大小無關(guān);

(2)設(shè)拋物線的焦點(diǎn)為,若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在多面體中,,四邊形為矩形,四邊形為直角梯形,,,.

(Ⅰ)求證:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程: 為參數(shù)),曲線的參數(shù)方程: 為參數(shù)),且直線交曲線兩點(diǎn).

(1)將曲線的參數(shù)方程化為普通方程,并求時(shí), 的長度;

(2)巳知點(diǎn),求當(dāng)直線傾斜角變化時(shí), 的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱函數(shù)上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請說明理由;

(2)若函數(shù)上是以3為上界的有界函數(shù),求實(shí)數(shù)的取值范圍;

(3)若,函數(shù)上的上界是,求的解析式.

查看答案和解析>>

同步練習(xí)冊答案