【題目】已知是橢圓上關(guān)于原點(diǎn)對(duì)稱的任意兩點(diǎn),且點(diǎn)都不在 軸上.

(1)若,求證: 直線的斜率之積為定值;

(2)若橢圓長軸長為,點(diǎn)在橢圓上,設(shè)是橢圓上異于點(diǎn)的任意兩點(diǎn),且.問直線是否過一個(gè)定點(diǎn)?若過定點(diǎn),求出該定點(diǎn)坐標(biāo);若不過定點(diǎn),請說明理由.

【答案】(1)見解析;(2)直線恒定過點(diǎn).

【解析】試題分析:1設(shè),則, 將坐標(biāo)帶入橢圓化簡即可;

(2)設(shè)直線,與橢圓聯(lián)立得,設(shè),由,韋達(dá)定理代入得,直線恒定過點(diǎn),當(dāng)直線斜率,易得成立.

試題解析:

(1) 由題意設(shè),則,所以有,又因?yàn)?/span>

,所以,(定值).

(2) 直線過點(diǎn),理由如下: ① 當(dāng)直線斜率,易得,

直線的方程為. 直線過點(diǎn).②由已知,橢圓方程為,設(shè)直線,則,設(shè),則,,

, , (舍去), 方程為,則直線恒定過點(diǎn)

綜上所述,直線恒定過點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(2,1), =(1,7), =(5,1),設(shè)X是直線OP上的一點(diǎn)(O為坐標(biāo)原點(diǎn)),那么 的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長方體ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E為BB1中點(diǎn).

(1)證明:AC⊥D1E;
(2)求DE與平面AD1E所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 令Tn= ,稱Tn為數(shù)列a1 , a2 , …,an的“理想數(shù)”,已知數(shù)列a1 , a2 , …,a502的“理想數(shù)”為2012,那么數(shù)列2,a1 , a2 , …,a502的“理想數(shù)”為(
A.2010
B.2011
C.2012
D.2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等比數(shù)列{an}中,公比q≠1,等差數(shù)列{bn}滿足b1=a1=3,b4=a2 , b13=a3
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)記cn=(﹣1)nbn+an , 求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知D是△ABC邊BC延長線上一點(diǎn),記 .若關(guān)于x的方程2sin2x﹣(λ+1)sinx+1=0在[0,2π)上恰有兩解,則實(shí)數(shù)λ的取值范圍是(
A.λ<﹣2
B.λ<﹣4
C.
D.λ<﹣4或

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0, )的圖象如圖所示.

(1)求A,w及φ的值;
(2)若tana=2,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知cosα= ,cosβ= ,且α,β∈(0, ),求cos(α﹣β),sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABCD為矩形,AB=3,BC=2,在矩形ABCD內(nèi)隨機(jī)取一點(diǎn)P,點(diǎn)P到矩形四個(gè)頂點(diǎn)的距離都大于1的概率為

查看答案和解析>>

同步練習(xí)冊答案