A. | 向左平移$\frac{π}{4}$個單位長度 | B. | 向右平移$\frac{π}{4}$個單位長度 | ||
C. | 向左平移$\frac{π}{2}$個單位長度 | D. | 向右平移$\frac{π}{2}$個單位長度 |
分析 利用誘導公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.
解答 解:把函數(shù)y=cos(2x-$\frac{4π}{3}$)=sin(2x-$\frac{5π}{6}$)的圖象向左平移$\frac{π}{4}$個單位長度,
可得y=sin[2(x+$\frac{π}{4}$)-$\frac{5π}{6}$]=sin(2x-$\frac{π}{3}$)的圖象,
故選:A.
點評 本題主要考查誘導公式的應用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,統(tǒng)一這兩個三角函數(shù)的名稱,是解題的關鍵,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [9,13] | B. | (3,9) | C. | [9,+∞) | D. | (9,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | $\frac{3}{2}$ | C. | $-\frac{8}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({-∞,\frac{1}{e}})$ | B. | $({0,\frac{1}{e}})$ | C. | (-∞,0) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若$\frac{1}{a}>\frac{1}$,則a<b | |
B. | 若命題$P:?x∈({0,π}),x+\frac{1}{sinx}≤2$,則?P為真命題 | |
C. | 已知命題p,q,“p為真命題”是“p∧q為真命題”的充要條件 | |
D. | 若f(x)為R上的偶函數(shù),則$\int_{-1}^1{f(x)dx}=0$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3.1 | B. | 3.14 | C. | 3.15 | D. | 3.2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com