精英家教網 > 高中數學 > 題目詳情

【題目】已知函數fx)=lnxax+1aR).

1)求fx)的單調區(qū)間;

2)設gx)=lnx,若對任意的x1∈(0+∞),存在x2∈(1+∞),使得fx1)<gx2)成立,求實數a的取值范圍.

【答案】1)當a≤0時,fx)單調遞增區(qū)間是(0,+∞);當a0時,fx)單調遞增區(qū)間是(0,),單調遞減在區(qū)間是(,+∞.2a

【解析】

1)函數求導得,然后分a≤0a0兩種情況分類求解.

2)根據對任意的x1∈(0,+∞),存在x2∈(1,+∞),使得fx1)<gx2)成立,等價于fxmaxgxmax,然后分別求最大值求解即可.

1,

a≤0時,fx)>0,fx)單調遞增,

a0時,在區(qū)間(0,)上,fx)>0fx)單調遞增,

在區(qū)間(,+∞)上,fx)<0,fx)單調遞減.

綜上:當a≤0時,fx)單調遞增區(qū)間是(0,+∞),

a0時,fx)單調遞增區(qū)間是(0,),單調遞減在區(qū)間是(+∞.

2,

在區(qū)間(1,3)上,gx)>0,gx)單調遞增,

在區(qū)間(3,+∞)上,gx)<0,gx)單調遞減,

所以gxmaxg3)=ln3,

因為對任意的x1∈(0,+∞),存在x2∈(1,+∞),使得fx1)<gx2)成立,

等價于fxmaxgxmax,

由(1)知當a≤0時,fx)無最值,

a0時,fxmaxf)=﹣lna,

所以﹣lnaln3

所以,

解得a

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數a,bR).

1)若fx)在點(1f1))的切線為yx+1,求fx)的單調性與極值;

2)若b=﹣1,函數有且只有一個零點,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為:為參數),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程與曲線的直角坐標方程;

(2)設曲線與直線交于兩點,若點的坐標為,求

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx)=|xa||x2|1

1)當a1時,求不等式fx≥0的解集;

2)當fx≤1,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】奇函數fx)在R上存在導數,當x0時,fx),則使得(x21fx)<0成立的x的取值范圍為(

A.(﹣1,0)∪(0,1B.(﹣,﹣1)∪(01

C.(﹣1,0)∪(1,+∞D.(﹣,﹣1)∪(1,+∞

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】空氣質量指數AQI是反映空氣質量狀況的指數,AQI指數值越小,表明空氣質量越好,其對應關系如下表:

AQI指數值

0~50

51~100

101~150

151~200

201~300

>300

空氣質量

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

下圖是某市10月1日—20日AQI指數變化趨勢:

下列敘述錯誤的是

A. 這20天中AQI指數值的中位數略高于100

B. 這20天中的中度污染及以上的天數占

C. 該市10月的前半個月的空氣質量越來越好

D. 總體來說,該市10月上旬的空氣質量比中旬的空氣質量好

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019625日,《固體廢物污染環(huán)境防治法(修訂草案)》初次提請全國人大常委會審議,草案對“生活垃圾污染環(huán)境的防治”進行了專章規(guī)定.草案提出,國家推行生活垃圾分類制度.為了了解人民群眾對垃圾分類的認識,某市環(huán)保部門對該市市民進行了一次垃圾分類網絡知識問卷調查,每一位市民僅有一次參加機會,通過隨機抽樣,得到參加問卷調查的1000人的得分(滿分:100分)數據,統(tǒng)計結果如表所示:

得分

頻數

25

150

200

250

225

100

50

1)由頻數分布表可以認為,此次問卷調查的得分服從正態(tài)分布,近似為這1000人得分的平均值(同一組數據用該組區(qū)間的中點值作為代表),請利用正態(tài)分布的知識求;

2)在(1)的條件下,市環(huán)保部門為此次參加問卷調查的市民制定如下獎勵方案:

①得分不低于 “的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費;

②每次獲贈的隨機話費和對應的概率為:

獲贈的隨機話費(單位:元)

20

40

概率

現市民小王要參加此次問卷調查,記(單位:元)為該市民參加問卷調查獲贈的話費,求的分布列及數學期望.

附:①;②若,則,,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的參數方程為為參數),直線經過點且傾斜角為.

1)求曲線的極坐標方程和直線的參數方程;

2)已知直線與曲線交于,滿足的中點,求.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在極坐標系中,直線的極坐標方程為.以極點為原點,極軸為軸的正半軸建立平面直角坐標系,曲線的參數方程為,(為參數).

1)請寫出直線的參數方程;

2)求直線與曲線交點的直角坐標.

查看答案和解析>>

同步練習冊答案