(本小題滿(mǎn)分16分)   如圖,在平面直角坐標(biāo)系中,已知點(diǎn)為橢圓

的右頂點(diǎn), 點(diǎn),點(diǎn)在橢圓上, .

(1)求直線的方程; (2)求直線被過(guò)三點(diǎn)的圓截得的弦長(zhǎng);

(3)是否存在分別以為弦的兩個(gè)相外切的等圓?若存在,求出這兩個(gè)圓的方程;若不

存在,請(qǐng)說(shuō)明理由

 

 

 

【答案】

 

 (1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052602225754288921/SYS201205260224540428486452_DA.files/image001.png">,且A(3,0),所以=2,而B(niǎo),P關(guān)于y軸對(duì)稱(chēng),所以點(diǎn)P

的橫坐標(biāo)為1,

從而得……………………………3分         

所以直線BD的方程為………………5分

(2)線段BP的垂直平分線方程為x=0,線段AP的垂直平分線方程為,

所以圓C的圓心為(0,-1),且圓C的半徑為……………8分

又圓心(0,-1)到直線BD的距離為,所以直線被圓截得的弦長(zhǎng)為

 ……………………………………………10分

(3)假設(shè)存在這樣的兩個(gè)圓M與圓N,其中PB是圓M的弦,PA是圓N的弦,則點(diǎn)M一定在y軸

上,點(diǎn)N一定在線段PC的垂直平分線上,當(dāng)圓和圓是兩個(gè)相外切的等圓時(shí),

一定有P,M,N在一條直線上,且PM=PN……………………………………12分

設(shè),則,根據(jù)在直線上,

解得………………………………………………………………………14分

所以,故存在這樣的兩個(gè)圓,且方程分別為

,………………………………16分

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010江蘇卷)18、(本小題滿(mǎn)分16分)

在平面直角坐標(biāo)系中,如圖,已知橢圓的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F。設(shè)過(guò)點(diǎn)T()的直線TA、TB與橢圓分別交于點(diǎn)M,其中m>0,

(1)設(shè)動(dòng)點(diǎn)P滿(mǎn)足,求點(diǎn)P的軌跡;

(2)設(shè),求點(diǎn)T的坐標(biāo);

(3)設(shè),求證:直線MN必過(guò)x軸上的一定點(diǎn)(其坐標(biāo)與m無(wú)關(guān))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年泰州中學(xué)高一下學(xué)期期末測(cè)試數(shù)學(xué) 題型:解答題

(本小題滿(mǎn)分16分)
函數(shù),(),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,對(duì)任意時(shí),恒成立,求實(shí)數(shù)的范圍;
(Ⅲ)如果,當(dāng)“對(duì)任意恒成立”與“內(nèi)必有解”同時(shí)成立時(shí),求 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆江蘇大豐新豐中學(xué)高二上期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分16分)     本題請(qǐng)注意換算單位

某開(kāi)發(fā)商用9000萬(wàn)元在市區(qū)購(gòu)買(mǎi)一塊土地建一幢寫(xiě)字樓,規(guī)劃要求寫(xiě)字樓每層建筑面積為2000平方米。已知該寫(xiě)字樓第一層的建筑費(fèi)用為每平方米4000元,從第二層開(kāi)始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元。

(1)若該寫(xiě)字樓共x層,總開(kāi)發(fā)費(fèi)用為y萬(wàn)元,求函數(shù)y=f(x)的表達(dá)式;

(總開(kāi)發(fā)費(fèi)用=總建筑費(fèi)用+購(gòu)地費(fèi)用)

(2)要使整幢寫(xiě)字樓每平方米開(kāi)發(fā)費(fèi)用最低,該寫(xiě)字樓應(yīng)建為多少層?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆安徽省蚌埠市高二下學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分16分)設(shè)命題:方程無(wú)實(shí)數(shù)根; 命題:函數(shù)

的值域是.如果命題為真命題,為假命題,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高一第三階段檢測(cè)數(shù)學(xué)卷 題型:解答題

(本小題滿(mǎn)分16分)

已知函數(shù)f(x)=為偶函數(shù),且函數(shù)yf(x)圖象的兩相鄰對(duì)稱(chēng)軸間的距離為

(Ⅰ)求f)的值;

(Ⅱ)將函數(shù)yf(x)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)延長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)yg(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案