老師告訴學(xué)生小明說,“若O為△ABC所在平面上的任意一點(diǎn),且有等式
OP
=
OA
+λ(
AB
cosC
|
AB
|
+
AC
cosB
|
AC
|
)
,則P點(diǎn)的軌跡必過△ABC的垂心”,小明進(jìn)一步思考何時P點(diǎn)的軌跡會通過△ABC的外心,得到的條件等式應(yīng)為
OP
=
OP
=
OB
+
OC
2
+λ(
AB
|
AB
|cosB
+
AC
|
AC
|cosC
)
OP
=
OB
+
OC
2
+λ(
AB
|
AB
|cosB
+
AC
|
AC
|cosC
)
.(用O,A,B,C四個點(diǎn)所構(gòu)成的向量和角A,B,C的三角函數(shù)以及λ表示)
分析:由題意可得:
BC
•(
AB
|
AB
| cosB
+
AC
|
AC
| cosC
)=0,即 
BC
與λ(
AB
|
AB
| cosB
+
AC
|
AC
| cosC
)垂直,設(shè)D為BC的中點(diǎn),則
OB
+
OC
2
=
OD
,可得λ(
AB
|
AB
| cosB
+
AC
|
AC
| cosC
)=
DP
,即可得到
BC
DP
=0
,進(jìn)而得到點(diǎn)P在BC的垂直平分線上,即可得到答案.
解答:解:由題意可得:
BC
•(
AB
|
AB
| cosB
+
AC
|
AC
| cosC
)=-|
BC
|+|
BC
|=0
BC
與λ(
AB
|
AB
| cosB
+
AC
|
AC
| cosC
)垂直
設(shè)D為BC的中點(diǎn),則
OB
+
OC
2
=
OD
,
所以
OP
=
OB
+
OC
2
+λ(
AB
|
AB
|cosB
+
AC
|
AC
|cosC
)
,即
OP
=
OD
+λ(
AB
|
AB
|cosB
+
AC
|
AC
|cosC
)

所以λ(
AB
|
AB
| cosB
+
AC
|
AC
| cosC
)=
DP
,
因?yàn)?span id="mo6zkra" class="MathJye">
BC
與λ(
AB
|
AB
| cosB
+
AC
|
AC
| cosC
)垂直
所以
BC
DP
=0

又∵點(diǎn)D為BC的中點(diǎn),
∴點(diǎn)P在BC的垂直平分線上,即P的軌跡會通過△ABC的外心.
故答案為:
OP
=
OB
+
OC
2
+λ(
AB
|
AB
|cosB
+
AC
|
AC
|cosC
)
點(diǎn)評:本題主要借助于類比推理重點(diǎn)考查了平面向量的加減法運(yùn)算與數(shù)量積運(yùn)算,并且也考查了三角形的五心等知識點(diǎn),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

老師告訴學(xué)生小明說,“若O為△ABC所在平面上的任意一點(diǎn),且有等式
OP
=
OA
+λ(
AB
cosC
|
AB
|
+
AC
cosB
|
AC
|
)
,則P點(diǎn)的軌跡必過△ABC的垂心”,小明進(jìn)一步思考何時P點(diǎn)的軌跡會通過△ABC的外心,得到的條件等式應(yīng)為
OP
=______.(用O,A,B,C四個點(diǎn)所構(gòu)成的向量和角A,B,C的三角函數(shù)以及λ表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年上海市上海中學(xué)高三3月綜合練習(xí)數(shù)學(xué)試卷1(文理合卷)(解析版) 題型:解答題

老師告訴學(xué)生小明說,“若O為△ABC所在平面上的任意一點(diǎn),且有等式,則P點(diǎn)的軌跡必過△ABC的垂心”,小明進(jìn)一步思考何時P點(diǎn)的軌跡會通過△ABC的外心,得到的條件等式應(yīng)為=    .(用O,A,B,C四個點(diǎn)所構(gòu)成的向量和角A,B,C的三角函數(shù)以及λ表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市上海中學(xué)高三數(shù)學(xué)綜合練習(xí)試卷(1)(解析版) 題型:解答題

老師告訴學(xué)生小明說,“若O為△ABC所在平面上的任意一點(diǎn),且有等式,則P點(diǎn)的軌跡必過△ABC的垂心”,小明進(jìn)一步思考何時P點(diǎn)的軌跡會通過△ABC的外心,得到的條件等式應(yīng)為=    .(用O,A,B,C四個點(diǎn)所構(gòu)成的向量和角A,B,C的三角函數(shù)以及λ表示)

查看答案和解析>>

同步練習(xí)冊答案