6.已知函數(shù)y=tanx與y=2sin(2x+φ)(0<φ<π),且它們的圖象有一個(gè)橫坐標(biāo)為$\frac{π}{4}$的交點(diǎn),則ϕ值為$\frac{π}{3}$.

分析 根據(jù)兩函數(shù)的圖象有一個(gè)橫坐標(biāo)為$\frac{π}{4}$的交點(diǎn),結(jié)合φ的取值范圍即可求出φ的值.

解答 解:函數(shù)y=tanx與y=2sin(2x+φ)的圖象有一個(gè)橫坐標(biāo)為$\frac{π}{4}$的交點(diǎn),
∴tan$\frac{π}{4}$=2sin(2×$\frac{π}{4}$+φ)=1,
∴cosφ=$\frac{1}{2}$,
解得φ=2kπ±$\frac{π}{3}$,k∈Z,
又∵0<φ<π,
∴φ=$\frac{π}{3}$.
故答案為:$\frac{π}{3}$.

點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象與性質(zhì)、三角函數(shù)求值的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知集合A={1,2,3},B={y|y=2x-1,x∈A},則A∩B={1,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知向量$\overrightarrow{m}$=(2sinA,1),$\overrightarrow{n}$=(sinA+$\sqrt{3}$cosA,-3),$\overrightarrow{m}$⊥$\overrightarrow{n}$,其中A是△ABC的內(nèi)角.
(1)求角A的大小;
(2)設(shè)△ABC的角A,B,C所對(duì)的邊分別為a,b,c,D為BC邊中點(diǎn),若a=4,AD=2$\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.[x]表示不超過(guò)x的最大整數(shù),如[0.9]=0,[2.6]=2,則[lg1]+[lg2]+[lg3]+…+[lg100]=92.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.$1+11+111+…+\underbrace{11111…1}_{n個(gè)1}$之和是$\frac{{{{10}^{n+1}}-9n-10}}{81}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知兩點(diǎn)A(2,0),B(0,2),則以線段AB為直徑的圓的方程為(x-1)2+(y-1)2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合A={-1,0,1},B={1,2},則A∪B等于(  )
A.{0,1}B.{1}C.{-1,0,1,2}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知$f(x)=\frac{sinx}{1+cosx}$,x∈(-π,0).當(dāng)f'(x0)=2時(shí),x0等于(  )
A.$\frac{2π}{3}$B.$-\frac{2}{3}π$C.$-\frac{π}{3}$D.$-\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{a}{x}$+lnx-2,a∈R
(1)當(dāng)a=8時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù)a,使函數(shù)f(x)在(0,e2]上有最小值2?若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案